
Parallel Volume Visualization
on a Hypercube Architecture

C. Montani *, R. Perego **, R. Scopigno **

* Istituto Elaborazione dell’hformazione - Consiglio Nazionale delIe Ricerche
Via S. Maria, 40 - 56100 Pise, Italy

l * Istituto CNUCE - Consiglio Nazionale delle Rice&e
Via S. Maria, 36 - 56100 Pisa, Italy

ABSTRACT
A parallel solution to the visualiaation of high resolution uol-
ume data is presented. Baaed on the ray tracing (RT) uiau-
alization technique, the system works on a distributed mem-
ory MIMD architecture. A hybrid strategy to my tracing
parallelitation is applied, using ray-dataflow within an im-
age partition approach. This strategy allows the flexible and
efiectiue management of huge dataset on architectures with
limited local memory. The dataaet is distributed over the
nodes using a slice-partitioning technique. The simple data
partition chosen implies a atraighforward communications
pattern of the visualization processes and this improves both
software design and eficiency, while providing deadlock pre-
vention. The partitioning technique used and the network in-
terconnection topology allow for the efjicient implementation
of a statical load balancing technique through pre-rendering
of a low resolution image. Details related to the practical
issues involved in the parallelitation of volumetric RT are
discussed, with particular reference to deadlock and termi-
nation issues.

INTRODUCTION

The need to visualize numerical datasets is common to many
activities, both in research and applications. A large sub-
set of these applications makes frequent use of sampled
scalar/vector fields of three spatial dimensions, also known
as volume data[6]. Volume Visualization provides the user
with data representation structures and tools which can ren-
der a 3D grid of data in a more understandable way than
presenting them in tabular formats or as a sequence of 2D
images.

The wide range of different volumetric datasets can be
classified, following the taxonomy by J. Wilhelms [22], in
four classes (regular, rectilinear, irregular, unstructured)
based on the features of the underlying physical grid. Reg-
ular datasets represent values of a field evaluated on the
nodes of a regular grid. They can be interpreted as uoxel-
baaed models, where the value is considered constant in the
elementary cubic volume surrounding each grid node, or
as cell-baaed models, where the value varies linearly in the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
1992 Workshop on Volume Visualization/l 0/92/Boston, MA

@ 1992 ACM 0-8979l-528-3/92/0010/0009...$1.50

space between grid nodes. In this paper the authors will
refer to regular datasets, either voxel-based or cell-based.

In regard to rendering, two antithetical approaches can
be applied to volume datasets. The first is based on com-
putation of a surface-model approximation of some of the
iso-valued surfaces contained in the voxel dataset [12] and
the use of standard rendering techniques [S] to visualize the
surfaces. The second approach, known as direct volume ren-
dering, visualizes the dataset without an explicit boundary-
to-voxel conversion. The latter approach is more appropri-
ate, in terms of both results and efficiency, to high-resolution
voxel datasets [22]. Direct volume rendering techniques can
be further subdivided into two other classes: projective al-

gorithms [16] [23] [21] and my tmcing (RT) algorithms [2]
PO1 WI*

RT is a consolidated visualisation technique [8], which de-
termines the visibility and the shaded color of the surfaces
in the scene by tracing imaginary rays from the viewer’s eye
to the objects in the scene. Once the viewer’s eye position
(uep) and the image plane window have been defined, a ray
is fired from the uep through each pixel p in the image win-
dow. The closest ray-object intersection identifies the visible
object, and a recursive ray generation and tracing process
is applied to handle shadows, reflection and refraction.
RT can be extended to volume dataset visualization; it can
be implemented with a surface-searching approach [13], a
cornpositing approach [lo], or both. In the surface-searching
approach, field values associated with iso-surfaces of inter-
est are classified and each ray is traced searching for voxels
with value equal to one of these threshold values. When a
compositing approach is applied, the values associated with
each voxel pierced by the ray (generally opacity and color)
are composed, and semi-transparent images are generated.
The computational complexity of volumetric RT is lower
than classical surface RT because much less “realism” is re-
quired in the visualization of volume datasets; for example,
specular reflection effects and shadow computations do not
generally need to be simulated. On the other hand, trans-
parency effects are important for the analysis of inner con-
stituents, and so the associated secondary rays usually have
to be traced. The number of rays generated is therefore
lower than that required by “classic” geometrical ray trac-
ers, and it is generally linear with the number of primary
rays.

Although volumetric RT is less complex computationally
than the geometrical one, interactive throughputs are diffi-
cult to achieve on traditional architectures.
We propose the parallel implementation of a ray tracing al-

9

gorithm, based on an novel hybrid parallelization strategy.
The need to distribute the dataset over the local memo-
ries of the parallel architecture is a must for this approach.
Due to the computational characteristics of volume RT, an
extremely frequent access to the dataset is required and
therefore solutions designed for shared-memory computa-
tional model cannot reach high efficiency on massively par-
allel architectures. The proposed solution is designed for
distributed memory multiprocessors, and applies a dataset
allocation strategy which depends on the local memory size
and the dataset resolution thus permitting best efficiency
and data distribution.
The algorithm works on both vmel-based and cell-based
datasets, and. runs on a hypercube multicomputer.

The paper is organised as follows. The following section
outlines the state of the art in parallel volume rendering.
The parallelization and data partitioning strategies are pre-
sented and evaluated in the third Section. Then, a detailed
description of the proposed solution to parallel ray tracing
of voxel datasets is presented. Finally, results and conclud-
ing remarks are reported.

TOWARDS INTERACTIVE
VISUALIZATION
Visualizing volume datasets requires expensive computa-
tion, due to the complexity of both the algorithm and the
datasets. The practical every day use of visualization as
an analytical tool requires interactive dialogue between the
user and the visualization system; therefore, image synthesis
time is a critical issue.

A number of specialized and/or parallel architectures de-
signed for volumetric rendering have been proposed, and a
brief classification and description follows. Some of them
are described in detail in the survey by Kaufman et al. [q]
and Stytz et al. [18].

0 Special-purpose architectures
The CURE architecture is characterized by an origi-
nal memory organization and uses a multiprocessing
engine. CUBE allows parallel access and processing
of voxels beam with a ray-casting based rendering ap-
proach.
The INSIGHT system represents voxel datasets by
means of a data compression scheme (the octree
scheme) and uses a specialized processor to apply a
Back-to-Front traversal of the octree nodes.
These architectures as well as others such as the PAR-
CUMsystem, the VOXEL Processor and the 3DP4 ar-
chitecture have not yet been developed in full scale and
only medi.um resolution prototypes or software simula-
tors are currently available.

0 Implementations on general-purpose multipro-
cessors
The CA RVUPP system [24] generates shaded images of
a single iso-valued surface from volumetric datasets us-
ing a Front-to-Back projective approach. The system
was developed with an INMOS Transputer network and
is part of a medical imaging workstation.
Both ray t,racing and projective approaches were paral-
lelized by Challinger [3] on a shared memory multipro-
cessor (a BBN TC2000). The ray tracing implementa-
tion is based on the partition of the image space, with
the pixels computed independently on different nodes.
A projective approach to rendering orthogonal views

slice 2D grid 3D grid

Figure 1: Partitioning strategies for a voxcl dataset.

was implemented by Schroeder and Salem [17] on a
data-parallel computer (a Thinking Machine CM-2).
A ray casber which works on multiprocessor worksta-
tions was proposed by Fruhauf [7]. The system is based
on the transformation of the dataset from modeling
space to vi,ewing space. Rays are then casted by sepa
rate processors with ray direction always orthogonal to
the viewing plane.

PARALLEL RAY TRACING OF
REGULAR DATASETS
In our project we concentrated on the parallel design of a RT
algorithm to visualize voxel datasets on distributed-memor,y
MIMD architectures. There are two aspects which warrant
careful evaluation in order to give an efficient parallel imple-
mentation: parallelizing and data partitioning strategies.

Parallelizing and data partitioning strategies
Badouel, Bouatouch and Priol [l] classified the paml1elizin.g
strategies for RT by focusing on the kind of data transmitted
on the processor interconnection network. This classification
can be assessed for volume RT as follows:

parallelism via image partition (also known as:
parallelism without dataflow, or parallelism on pix-
els): a standard sequential RT implementation and the
whole scene are replicated on each processing node. A
partition of the image space identifies the subset(/s;l
of pixels that each node will independently synthesize.
Implementations are straightforward and scalable, but
the memory requirements are often prohibitive.

parallelism with ray dataflow: the scene data are
partitioned and distributed to the processors. Each
processor traces each ray in the local partition only.
Each non-resolved ray is transmitted to “adjacent” pro-
cessors for further tracing. The parallelization of RT
sequential code is a complex task.

parallelism with object dataflow: a partition of
the image is assigned to each processor, which locally
traces and resolves each assigned ray. As in the pre-
vious strategy, scene data are partitioned among the
processors, and an emulation of shared memory based
on the transmission on request of data is therefore re-
quired. In volume RT the transmission of portions of
high resolution datasets may involve large overhead and
therefore this strategy is not at all effective.

parallelism on intersections: for each ray, a number
of slave processors computes the ray-primitive inter-
sections and returns them to a master, which sorts the
intersections and computes shading. This strategy can-
not be applied to volume RT, due to the simplicity of
voxel tracing versus the higher cost of inter-node com-
munications and the implicit ordering in voxel tracing.

10

Figure 2: A scalable parallel system based on a hybrid approach.

In volume RT the possible choices are therefore limited
to image partition or ray dataflow.

Partitioning a regular dataset is extremely simple because
of the homogeneous and regular spatial distribution of the
data. Some partitioning strategies are sketched in Figure 1:
one-dimensional partitioning (slice partitioning) with the
dataset divided into slices by using a set of parallel cut-
ting planes; two-dimensional and three-dimensional parti-
tioning, generated by means of 2D or 3D grids of orthogo-
nal cutting planes or by the recursive subdivision in quad-
rant/octants. All of these strategies can be used to produce
regular or adaptive partitions of the dataset.
A ray tracer based on parallelism with ray dataflow entails
subdividing the dataset, and therefore inter-node communi-
cations will be required for each ray that exits a partition
allocated on one node and enters into an adjacent one. Each
partitioning criterion implies different communications pat-
terns between the RT processes. A bi-directional logical
channel must connect each pair of nodes managing adjacent
partitions, thus leading to a logical ring interconnection for
the slice partitioning and 2D or 3D mesh interconnections
for 2D or 3D grid partitioning, respectively.
The topology of the underlying architecture generally influ-
ences the partitioning criteria. Due to the high number of
messages interspersed with computations, an effective design
of a parallel my-dataflow RT algorithm must preserve com-
munications locality by mapping the processes which hold
adjacent partitions on neighbouring nodes in the hardware
topology. A 3D grid partition strategy, for instance, is cer-
tainly not optimal if implemented on architectures with a
lower dimensional topology (e.g. transputer-based architec-
tures). Moreover, the more complex the interconnection is,
the more complex will be the correct management of inter-
node communications and deadlock prevention.

A hybrid parallelization approach to achieving
high scalability

The choice of a parallelism with ray dataflow to render
volume datasets is justified by the following considerations:

l the huge amount of memory needed to represent high-
resolution voxel datasets, even if the datasets have been
previously classified and compressed, makes partition-
ing and distributing the data a must. This is due to
the limitation of the local RAM space and the lack of
virtual memory management common to most multi-
computers.

s regular dataset subdivision into distinct partitions is
simple and does not involve all the problems inherent
in boundary or CSG scene partitions (e.g. elementary
primitive spanning more than one partition).

l visual realism is not as important as in high-quality
rendering. Users of volume rendering applications are
generally more concerned with knowledge of the rep-
resented phenomena than with excessive realism. This

Dataset Plrtition: Datanet dbation:

chukr 1

chlsbxz

. . .

. . .

. . .

ChIda m

w

dial . slla 2
dike L, 4

Figure 3: Allocation of the voxel dataset on the processing nodes
(in the example, a configuration with four nodes per cluster is
shown).

means fewer number of rays generated in the image
synthesis process and fewer ray transmissions on the
communications network, and thus lower communica-
tions overhead and simpler load balancing.

Adopting a slice partitioning strategy is justified in
terms of ease of implementation, management and load bal-
ancing, as the following points show:

l partitioning the dataset into slices and transmitting
them to the processing nodes is straightforward;

l the communications pattern between nodes is very sim-
ple;

l the simple partition criterion also allows extremely sim-
ple load balancing, based on dataset partition modifi-
cation. By shifting the cutting planes, the node load
can be easily optimized without altering the adjacency
relation between nodes.

Due to communications overhead, the scalability of a
slice-based RT is low. However, the exploitation of high
parallelism (e.g. 10’ or more processors) is prevented even
if different partitioning strategies (e.g. 2D or 3D grids) are
applied. The relative simplicity of tracing regular datasets
makes the trade-off between computation and interprocessor
communication extremely costly, as the mean length of the
ray traced by each node is reduced to a few tenths of voxels.
Whichever partition criterion is chosen, effective scalability
of the ray dataflow solution is unlikely to be achieved by
simply increasing the number of partitions, with the resolu-
tion of the data unchanged. In other words, only when the
dataset resolution increases can a proportional increase in
the exploited parallelism be gained through finer partition-
ing of the dataset space.

Following the above guidelines, a highly parallel volume
raytracing system can only be designed by applying a ray
dataflow approach within an image partition approach
(Figure 2). The computing nodes can be organized into a
set of clusters, each of them composed of the same number
of nodes. The image space is partitioned and a subset of
pixels is assigned to each cluster, which will compute pixel
values independently. Each cluster is composed of a set of
co-operating nodes, working under a my dataflow approach.
The dataset is replicated on each cluster, and is partitioned
among the local memory of the cluster’s nodes. In order to
optimize global efficiency the number of nodes per clusters
is chosen as a function of dataset resolution.

11

VOLUME RT ON A HYPERCUBE
ARCHITECTURE

The proposed hybrid solution was implemented on a highly
parallel hypercube multicomputer, an nCUBE 2 system,
model 6410, populated with 128 processing nodes each with
4 Mbytes of local memory. Running at a clock rate of 20
MHz, the nCUBE node processor is rated at 7.5 MIPS and
3.3 MFLOPS, single precision, or 2.4 MFLOPS, double pre-
cision. The datasets are stored on the nCUBE file system in
four one-Gbytes disks which are managed by the same num-
ber of I/O processors. Due to the lack of a graphics board,
the images computed on the hypercube are visualized under
the X11 environment of the host workstation.

The software architecture

The proposed parallel algorithm derives from the volume RT
algorithm described in [13].
The parallel algorithm was designed by using a hybrid im-
age partition - my dotafiou, approach leading to a set of
processes which communicate following a mesh pattern.
To embed the process graph into the hypercube topology
(Figure 3), the P = 2k nodes of the parallel system were log-
ically divided into m = 2’ clusters, composed of cd = 2k-i
nodes interconnected in a ring (cd=cluster dimension). Such
an embedding can be built so that the neighbourhood rela-
tions are preserved [15].
The image synthesis process is divided among clusters with
a without dotafioa approach. The strategy chosen to par-
tition the image between clusters is extremely simple: the
image is divided into rows of pixels; row ri, with 1 5 i < N
and N * N the image resolution, is assigned for computa?ion
to the (i DIV m)th cluster. The resulting load is balanced
because the time for the synthesis of rows which are adja
cent or close in the image is nearly equal, if the hypothesis
of N >> m holds.

The same code runs on each processing node, known as a
worker. Each worker computes its cluster number and po-
sition inside the cluster with simple transformations of the
hypercube nodeid (the identification code assigned to each
node) [15].
The tracing process is parallelized at the cluster level with
a ray dataflow approach. The dataset is partitioned into
slices, and each slice sj of the volume data is replicated on
the local memory of the node wj on all the clusters (Fig-
ure 3). The position inside a cluster of a node univocally
identifies the dataset slice assigned to it. Each node can
therefore asynchronously load the data subset contained in
the assigned space partition from secondary storage.

Volume ray tracing consists of a simple incremental scan
conversion of the ray in order to identify all of the voxels
which are crossed by the ray.
For each sampling point on the ray, the algorithm reads from
the voxel dataset or interpolates the sampling point value
on the cell dataset. If the algorithm detects a threshold
crossing, the ray has traversed an iso-surface and shading
computation is applied. Depending on the transparency co-
efficient associated with the field value, ray tracing is either
stopped or continues to search for other threshold voxels.
If the ray exits the space partition assigned to the worker
without hitting any threshold voxel, two different outcomes
can occur. If the ray enters the partition assigned to an adja,
cent worker, the current worker stops tracing and transmits
the ray description to the adjacent one. The adjacent worker

will continue tracing that ray in its dataset partition. Oth-
erwise, if the ray exits from the global bounding volume of
the dataset, tracing stops and the color contribution of the
ray is computed.

Each worker manages the generation of all the primary
rays assigned to its cluster. It intersects each ray with the
bounding volume (buoy) of the dataset. If the first ray-bvol
intersection is located on the frontier of the local partition,
then the worker starts tracing it, otherwise the primary ray
is rejected.
The drawback of this distributed primary ray generation
strategy is that for each pixel row assigned to the cluster,
the associated primary rays are generated and checked on all
the worker nodes in the cluster. Alternatively, using a urn-
tmlized strateg:y, primary rays can be generated and tested
for intersection on a single node (e.g. on the host) and each
ray transmitted to the worker whose space partition is tra-
versed first by the ray.
The centralized strategy leaves the nodes active on effective
tracing only. On the other hand, the distributed policy in-
volves a significant reduction in communications overhead.
Since primary rays are generated on request, workers do not
need to read them from the communications buffer of the
node. The advantage is lower size and faster management
of the communications buffer, because the nCUBE system
primitives testing for the presence of, or getting messages
from, the communications buffer have a complexity propor-
tional to the buffer size and the number of messages cum-
rently pending.
A distributed strategy enables generating primary rays ton
each node when no ray tracing requests from adjacent nodes
are pending in the communication buffer. This solution pos-
itively affects both load balancing and deadlock preventian.

The recursive RT process can be completed by a single
node wi, or distributed on a number of co-operating nodes.
If it is possible to trace the whole ray tree in the Wi space,
the color contributions of these rays are composed to give
the resulting pixel value. Otherwise, each ray rk in the tratc-
ing tree, which exits the space partition of wi and enters
those of an adjacent node wj, has to be transmitted to lwj
for further tracing. At this point, wi has to wait for a ray
descriptor, relative to rk and containing its computed color
contribution, to return from wj. In order to prevent active
waiting, wi saves the current state of the computation on a
primary ray descriptor and starts tracing another ray.
The worker process will terminate the computation of the
pixel color associated with that previous primary ray when
it receives a ray descriptor containing the resolved rk and
its color contribution from a node of the cluster.
Shadow rays are managed the same way as transparency
rays: if they cannot be completely traced in the current
partition, they are transmitted to the adjacent node a:nd
the worker saves the current tracing status in order to re-
store it as soon as the resolved ray descriptor is received.
The worker manages a list of partially processed primary ray
descriptors. Each of these contains: the primary ray direc-
tion, its starting point and, if necessary, the resolved inter-
section ~1, the generated secondary rays and their respective
intersections, etc. All this status information results in a fur-
ther list of descriptors, one for each non-resolved secondary
ray.
The efficiency of the system might be increased by the use
of 3D shadow buffers, as proposed in [4]. The use of this
technique bring about a reduction of the secondary rays to
be traced and consequently of the internode communica-

12

tions. Nevertheless, the increased memory requirements of
this technique (to storing the 1 3D grids of shadowing info,
with 1 the light source number) make it mandatory to par-
tition the data and adopt of a ray dataflow strategy.

Each primary ray descriptor is created dynamically as
soon as a worker starts to trace a primary ray. The lit
is then held in the local memory of the worker which finds
the first intersection of the primary ray with a threshold
voxel. The primary ray descriptor is therefore created by
the worker wi, which starts to trace the ray, and then trans-
mitted to the adjacent worker if wi does not find an inter-
section in its partition.

Once all rays associated with a primary ray are traced,
the pixel color is computed on the basis of the threshold
voxels intersected, the characteristics of the associated iso-
surfaces and the normal vector approximated at the inter-
section points pi.
The normal vector at point pi is approximated by using an
object-space gradient method [19] with the gradient com-
puted from the value of a set of voxels at a distance of p
steps from pi in voxel-based datasets, or as the field gradi-
ent, in cell-based datasets. If pi is on the boundary of the
partition, then some of the required neighbouring voxels/cell
nodes might be in the adjacent node’s local memory. In or-
der to avoid the necessary management of these requests for
external voxel values, and the associated overhead, we allo-
cate to each worker a dataset slice which is larger than the
associated partition (i.e. g voxel planes larger on both sides
where g is the maximum width of the 3D interval needed for
gradient computation).

The current implementation can be easily extended to
apply a cornpositive approach instead of a surface-searching
one. System performance should not be significantly altered
when a cornpositive shading model is used.

Deadlock prevention and termination algorithms

A peculiar characteristic of parallel raytracers with ray
dataflom are deadlock occurrences and the fact that each
tracer process cannot locally determine its termination.
Deadlocks may occur between two or more workers in a
cluster in the case they form a cyclic dependency when wait-
ing for messages, and no message can advance toward its
destination because the nodes’ communications buffers are
full. A slice partition strategy may cause cyclic dependency
between workers even if the flow of all the rays follows the
direction of the view (i.e. the user has positioned all light
sources so that shadow rays are traced in the same direction
as the view direction). In fact, the resolved secondary rays
with their color contribution return to the workers in which
the first intersection of the primary ray was found.
To avoid deadlock it is therefore necessary to prevent the
node communications buffers from being filled up. In our so-
lution the node communications buffer cannot be exhausted
because we have designed a monitoring mechanism based on
acknowledgement of the receipt of messages from the des-
tination workers. Each worker manages a set of counters
ni to trace the messages sent to a destination but not yet
received by the receiver. The counter ni increases when a
message is sent to worker wi and decreases when the node
receives the acknowledgement message ack from wi. Each
worker can send a new message to Wi only if ni is lower than
a value i,,, which is determined as a function of the size
of the communication buffer, the size of messages and the

Primary rays’ flow

Figure 4: Termination management via termination token trans-
mission (in the example, the view point is on the left of the
dataset, hence the primary ray propagation is in the direction
shown).

number of workers in a cluster. hrthermore, the worker
can begin to trace a new (primary or secondary) ray only
if the relation ni + rimor < i,,, holds, where rimcl= is
the maximum number of potential communications to the
worker wi required to trace that ray. The value of rimor can
be simply computed as a function of the type of ray and the
number of light sources in the scene.
If a worker cannot trace a new ray, it waits to receive ack
or ray messages from the other nodes. In order to increase
efficiency, priority is given, in this order: to ack messages,
resolved ray descriptors and new rays coming from adj,
cent workers. Only when the buffer of incoming messages is
empty does a worker generate a new primary ray and begin
to trace it.

The particular organization of the proposed solution
makes the termination algorithm extremely simple. Ter-
mination control is managed by using m termination tokens,
one for each cluster (Figure 4). On each cluster, the ter-
mination token is generated by the node w whose dataset
partition is nearest to the view point (i.e., node w is wl or
w,,). The tokens are transmitted between cluster nodes fol-
lowing the direction of propagation of primary rays. Each
node wj receives the token and transmit it to the adjacent
node as soon as all the pixels associated with the primary
rays generated by wj are rendered. The node which is fur-
thest from the view point transmits the token to the host
upon termination of local pixels rendering.
The host terminates the run as soon as it receives the mth
token, with m the number of clusters.

Load balancing

Dynamic load balancing methods generally involve a high
degree of message interchange in order to synchronize and
move data between nodes. In some cases the strategies are
complex and require partition modification and dynamic re-
allocation of the data. Furthermore, it is difficult to manage
the frequency of load redistribution and the behaviour of the
system under multiple partition redistribution.

The technique we implemented is a static technique sim-
ilar to that proposed by Priol, et al. [14]. It is based on
redistribution of the data depending on the estimated work-
load of each processor. As describdd above the initial data
partitioning is uniform. To choose a more effective distri-
bution of the dataset the host asks one cluster to trace a
subset of primary rays, regularly distributed on the image
plane (for example a regular grid of 16 * 16 or 32 * 32 rays).

13

On the basis of the total time ti spent by the worker Wi to
trace these test rays, the host defines a new subdivision of
the dataset, with size[i] of the new partition computed as:

si=[i] = sin-+] + (tmean - ti)/tsingle-plane

where t,,,,, is the mean processing time on the worker
nodes, and. Isinglc--plane = C(ti)/n, with n the resolution
of the dataset on the X axis.
In order toI achieve the new distribution, each worker node
transfers data to (and/or acquires it. from) its neighbour
nodes; this data transmission process is performed in par-
allel by the workers of each cluster. The technique is effec-
tive, because the redistribution time is much lower than the
image synthesis time. The substantial speedup obtained is
reported in Table 3.

Scalability

In designing the system one of the main goals was the ef-
ficient exploitation of high parallelism. To achieve optimum
system scalability, the flexibility of the hybrid parallelism
has to be carefully exploited. In fact, depending on the
specific characteristics of the datasets to be visualized and
on the requested visualization parameters (i.e. lights, pro-
jection and. view settings), a particular parallelism strategy
and degree may result in lower image synthesis time. So, for
each visualization request, the user selects the dimension p
of the hypercube to be used and the number of clusters in
which the cube has to be configured. For example, the user
can choose to synthesize the image following a pure image
partition approach by selecting a unitary dimension for the
clusters; on the other hand , a pure my doto~om opprooch
can be applied by configuring the system as a single clus-
ter of 2J’ nodes. The flexibility of the system allows for the
selection of the most suitable parallelization scheme, which
results in higher efficiency and interactive time in image syn-
thesis.

The host interface

The host workstation has management and I/O functions
only. It manages two main activities: (a) input file scanning
and hypercube management, (b) result (images) collection
and timing.

(a) 1nnDut file sconnino: the host reads in the inDut file soec-
ified by the user, which contains the selection of one or
more datasets plus the related visualization specifica-
tions. For each selected dataset the user specifies one
or more set of visualization parameters (i.e. projection
and view settings, threshold surface coefficients, etc.)
and the dimensions and configuration (i.e. the number
of clusters) of the hypercube to be used for the syn-
thesis of the image. For each dataset to be visualized,
the host allocates the requested hypercube, loads each
node with the executable worker code and broadcasts
the visualization parameters specified by the user to
the worker nodes.

(b) Images and timing collection: the workers trace the
image and send the evaluated pixels to the host node.
To minimize overhead, the workers accumulate pixel
values and transmit pixel sets to the host with a single
message. At the end of the image synthesis process,
each worker sends monitoring and statistical data back
to the host.

RESULTS
Results showing the system’s effective exploitation of paral-
lelism are presented in Table 1. The table contains the times
relative to the image synthesis at a resolution of 350x250
from a 97x97x116 dataset which represents the electron d.en-
sity map of an enzyme (SOD, Super Oxide Dismutase). The
dataset has been chosen for its wide-spread use, in order to
facilitate comparison with other experiences.
The test images, reproduced in Figure 5, are generated with
a view direction which forms a 45 degree angle with the Z
and X axes and orthogonal to the Y axis. The projeciion
of the dataset on the image plane covers an area of 301x194
pixels, and the distance between ray samples is l/2 of the
cell edge.

Both times and efficiencies are in Table 1. The analysis of
the efficiency is more suitable for evaluating system perfor-
mance because the actual times suffer from both the limited
speed of the nCUBE node processor with respect to the
more powerful RISC workstation processors and the 1ac:k of
optimization of the sequential raytracer used. No accelera-
tion techniques, such as Levoy’s octree [ll] or that proposed
in [13], are used in the current implementation; the system
is amenable to acceleration techniques which should re.sult
in performance enhancements similar to those reported for
sequential raytracers.

Table 2 reports the times and the efficiency measured1 on
the same dataset of Table 1 using a different configuration of
the hypercube nodes: the hypercube dimensions are fixed,
and the number of nodes in each cluster decreases from 16
to 1.

Table 3 reports the times and the efficiency measured on
the same dat,aset, with and without the use of the load bal-
ancing option.

Table 4 presents the profile analysis of a run on a single
cluster composed of 16 nodes. The dataset and image char-
acteristics are the same as the previous tables, and therefore
the use of a 16 node cluster involves the not negligible com-
munication overhead shown. Only the percentage times of
the more time consuming procedures are reported. Nest
is the system function used to test the presence of mes-
sages in the communication buffers; nreod and nwrite are
the communication primitives, the classical CSP send and
receive; Trace implements ray sampling; Interpolate interpo-
lates the cell-based dataset to compute sample point values;
VozelSample manages threshold searching and shadin,g.

The synthesis of 1024x768 images of the SOD dataset,
with the distance between ray samples equal to l/5 of the
cell edge (the projected dataset containment box is 748x482
pixels wide), requires 1’20” with efficiency 0.82 using all 128
nodes of the hypercube.

CONCLUSIONS
A proposal for a distributed-memory parallel system to ren-
der volumetric datasets has been presented. The methodol-
ogy and parallelization strategy followed in the system de-
sign have been described and justified. Using a ray tracing
approach, the system renders volumetric datasets which are
coded in a voxel-based or cell-based representation scheme.
It adopts a hybrid image partition - with my dataflow ap
preach based on a slice partitioning of the dataset. Sim-
ple and efficient procedures for minimizing communications

14

overhead, for termination detection and for static load bal-
ancing have been implemented and evaluated.

The reported results show that the proposed hybrid paral-
lelization strategy fulfils the initial goal: the visualization of
high resolution volume dataset on MIMD distributed mem-
ory architectures which are characterized by a low I/O band-
width and a reduced amount of local memory. More than
the actual run times, which suffer from shortcomings of the
base algorithm used, the efficiency obtained for such a highly
communicating algorithm (0.74 on 128 nodes) is higher than
those reported elsewhere and validates the correctness of the
design choices.

Acknowledgements
This work was partially funded by the Progetto Finaliz-

zato “Sistemi Informatici e Calcolo Parallelo” of the Con-
siglio Nazionale delle Ricerche.

The electron density map dataset was provided by Dun-
can MC Ree, Scripps Clinic, La Jolla (CA). We also thank
the University of North Carolina at Chapel Hill for having
collected and made available the above and other datasets.
The authors also thank Paolo Bussetti and Luca Misericor-
dia for their valuable contribution to the system implemen-
tation.

REFERENCES

PI

PI

[31

[41

PI

[‘51

[71

P31

PI

PO1

~Anol~l,, D., ROKATOWH, K., AK~ PRIOI., T.
Ray tracing on distributed memory parallel comput-
ers: strategies for distributing computations and data.
In Parallel Algorithms and Architectures for 3D Image
Generation - ACM SIGGRAPH ‘90 Course Note no.28
(July 1990), pp. 185-198.

CHATJJIY~C,F,R, J. Object Oriented Rendering of Volu-
metric and Geometric Primitives. PhD thesis, Univer-
sity of California, Santa Cruz, CA, 1990.

CHATJJNXR, J. Parallel volume rendering on a shared-
memory multiprocessor. Tech. Rep. CRL 91-23, Uni-
versity of California, Santa Cruz, CA, July 1991.

ERERT, TI., AN-I PARFXT, R. Rendering and animation
of gaseous phenomena by combining fast volume and
scanline a-buffer techniques. A. C. M. Computer Graph-
ics 24, 4 (August 1990) 357-366.

Fomy, J., VAK DAM, A., fillCER, S., ATCh‘n HIXIXS, J.
Computer Gmphics: Principles and Pmctice - Second
Edition. Addison Wesley, 1990.

FRWICKRT., K. Volume rendering. Comm. ACM 32, 4
(April 1989), 426-435.

FRI:HAI:F, T. Volume rendering on a multiprocessor
architecture with shared memory: A concurrent volume
rendering algorithm. In 3’d EuroGraphics Workshop on
Scientific Visualization (Pisa, April 1992).

GLASSWR, A. An Introduction to Ray Tracing. Acid
demic Press, 1989.

KACFMAF;, A., RAKALASH, R., COHFX, D., AIW
YA~T., R. A survey of architectures for volume render-
ing. IEEE Engineering in Medicin and Biology (Dec.
1990), 18-23.

TJWW, M. A hybrid raytracer for rendering polygon
and volume data. IEEE C. G.B A. 10, 2 (March 1990),
3340.

WI

WI

[I31

P4

P51

WI

P71

I181

P91

PO1

Pll

P-4

[231

T,F,VOY, M. Volume rendering by adaptive refinements.
ACM Trans. on Gmphics 9, 3 (July 1990).

T,ORE~‘SEK, W., AM-J Cr,rh‘n, H. Marching cubes:
a high resolution 3d surface construction algorithm.
ACM Computer Graphics 21, 4 (1987), 163-170.

MWTAIW, C., AM Sco~lmo, R. Rendering volumet-
ric data using the sticks representation scheme. ACM
Computer Graphics 4, 5 (November 1990), 87-94.

PR~oT., T., AIW ROI:ATOI:CH, K. Static load balancing
for a parallel ray tracing on a mimd hypercube. The
Visual Computer 5, l/2 (March 1989), 109-119.

RAICKA, S., AND QAHN, S. Hypercube Algorithms.
Springer-Verlag, New York, 1990.

R~~w-ms, R. A., Connoh-, D., AM-J (.:HEF;, T,. A
dynamic screen technique for shaded graphics display
of slice-represented objects. Computer Gmphics and
Image Processing, 38 (1987), 275-298.

SCHROT-JER, P., AWJ SALKIN, J. Fast rotation of volume
data on data parallel architectures. In Proceedings of
IEEE Visualization ‘91 (October 1991).

STYTL, M., FR~FJWI., C., ATW F~IR~JER., 0. Three-
dimensional medical imaging: Algorithms and com-
puter systems. ACM Computing Survey 23, 4 (Decem-
ber 1991), 421-499.

Tlcn~, U., Hmrx, K., ROMAIW, M., POMW,RT, A.,
M.RIEMKR, ANI W~EFIECKK, G. Investigation of med-
ical 3d-rendering algorithms. IEEE C. G.U A. 10, 2
(March 1990), 41-53.

~JPSOK, C., AKTI KEFXXR, M. V-buffer: Visible vol-
ume rendering. ACM Computer Gmphics 22,4 (August
1988), 59-64.

WESTWER, T,. Footprint evaluation for volume ren-
dering. ACM Computer Graphics 24, 4 (July 1990)
367-376.

~~lT.HKT.MS, J. Decisions in volume rendering. In State
of the Art in Volume Visualization - ACM SIGGRAPH
‘91 Course Note No.8 (July 1991), pp. l-11.

WlLHELMS, J., ATW &X.lWR, A. V. A coherent pro-
jection approach for direct volume rendering. ACM
Computer Graphics 25, 5 (July 1991), 275-284.

[24] YAZTIY, F., ‘TYRRFX., J., AM-I Rlm~, M. Carvupp:
Computer assisted radiological visualization using par-
allel processing. In NATO ASI Series - SD Imaging
in Medicine (1990), K. H. H. et al., Ed., vol. F60,
Springer-Verlag, pp. 363-375.

15

Tlmmgs 11 tame speedup e f f wxency

Table 1: Times (in seconds), speedup and efficiency of the visu-
alization of the SOD dataset with increasing number of nodes.

Cluster size 16 8 4 2 1
64nodeq t:mes 24.16 17.16 11.93 10.10 8.90
effrclency 0.31 0.44 0.64 0.75 0.85

128nodes, tames 12.32 8.77 6.70 5.14 6.42
effwtency 0.31 0.43 0.57 0.74 0.59

Table 2: Times (in seconds) and efficiency measured on the SOD
dataset with decreasing cluster size.

Cluster size 16 8 4 2
64nodes
standard times 24.16 17.16 11.93 10.10
64nodes
balanced times 15.20 12.26 10.26 9.27

128nodes
standard times 12.32 8.77 6.70 5.14
128nodes
balanced times 7.94 6.56 6.04 4.75

Table 3: Comparison between the times (in seconds), with or
without the adopted load balancing technique, for the visualiza-
tion of the SOD dataset with decreasing clusters size.

rofilmg eon

~~

Table 4: Profile analysis on a single 16-node cluster.

16

