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ABSTRACT 
A parallel solution to the visualiaation of high resolution uol- 
ume data is presented. Baaed on the ray tracing (RT) uiau- 
alization technique, the system works on a distributed mem- 
ory MIMD architecture. A hybrid strategy to my tracing 
parallelitation is applied, using ray-dataflow within an im- 
age partition approach. This strategy allows the flexible and 
efiectiue management of huge dataset on architectures with 
limited local memory. The dataaet is distributed over the 
nodes using a slice-partitioning technique. The simple data 
partition chosen implies a atraighforward communications 
pattern of the visualization processes and this improves both 
software design and eficiency, while providing deadlock pre- 
vention. The partitioning technique used and the network in- 
terconnection topology allow for the efjicient implementation 
of a statical load balancing technique through pre-rendering 
of a low resolution image. Details related to the practical 
issues involved in the parallelitation of volumetric RT are 
discussed, with particular reference to deadlock and termi- 
nation issues. 

INTRODUCTION 

The need to visualize numerical datasets is common to many 
activities, both in research and applications. A large sub- 
set of these applications makes frequent use of sampled 
scalar/vector fields of three spatial dimensions, also known 
as volume data[6]. Volume Visualization provides the user 
with data representation structures and tools which can ren- 
der a 3D grid of data in a more understandable way than 
presenting them in tabular formats or as a sequence of 2D 
images. 

The wide range of different volumetric datasets can be 
classified, following the taxonomy by J. Wilhelms [22], in 
four classes (regular, rectilinear, irregular, unstructured) 
based on the features of the underlying physical grid. Reg- 
ular datasets represent values of a field evaluated on the 
nodes of a regular grid. They can be interpreted as uoxel- 
baaed models, where the value is considered constant in the 
elementary cubic volume surrounding each grid node, or 
as cell-baaed models, where the value varies linearly in the 
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space between grid nodes. In this paper the authors will 
refer to regular datasets, either voxel-based or cell-based. 

In regard to rendering, two antithetical approaches can 
be applied to volume datasets. The first is based on com- 
putation of a surface-model approximation of some of the 
iso-valued surfaces contained in the voxel dataset [12] and 
the use of standard rendering techniques [S] to visualize the 
surfaces. The second approach, known as direct volume ren- 
dering, visualizes the dataset without an explicit boundary- 
to-voxel conversion. The latter approach is more appropri- 
ate, in terms of both results and efficiency, to high-resolution 
voxel datasets [22]. Direct volume rendering techniques can 
be further subdivided into two other classes: projective al- 

gorithms [16] [23] [21] and my tmcing (RT) algorithms [2] 
PO1 WI* 

RT is a consolidated visualisation technique [8], which de- 
termines the visibility and the shaded color of the surfaces 
in the scene by tracing imaginary rays from the viewer’s eye 
to the objects in the scene. Once the viewer’s eye position 
(uep) and the image plane window have been defined, a ray 
is fired from the uep through each pixel p in the image win- 
dow. The closest ray-object intersection identifies the visible 
object, and a recursive ray generation and tracing process 
is applied to handle shadows, reflection and refraction. 
RT can be extended to volume dataset visualization; it can 
be implemented with a surface-searching approach [13], a 
cornpositing approach [lo], or both. In the surface-searching 
approach, field values associated with iso-surfaces of inter- 
est are classified and each ray is traced searching for voxels 
with value equal to one of these threshold values. When a 
compositing approach is applied, the values associated with 
each voxel pierced by the ray (generally opacity and color) 
are composed, and semi-transparent images are generated. 
The computational complexity of volumetric RT is lower 
than classical surface RT because much less “realism” is re- 
quired in the visualization of volume datasets; for example, 
specular reflection effects and shadow computations do not 
generally need to be simulated. On the other hand, trans- 
parency effects are important for the analysis of inner con- 
stituents, and so the associated secondary rays usually have 
to be traced. The number of rays generated is therefore 
lower than that required by “classic” geometrical ray trac- 
ers, and it is generally linear with the number of primary 
rays. 

Although volumetric RT is less complex computationally 
than the geometrical one, interactive throughputs are diffi- 
cult to achieve on traditional architectures. 
We propose the parallel implementation of a ray tracing al- 
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gorithm, based on an novel hybrid parallelization strategy. 
The need to distribute the dataset over the local memo- 
ries of the parallel architecture is a must for this approach. 
Due to the computational characteristics of volume RT, an 
extremely frequent access to the dataset is required and 
therefore solutions designed for shared-memory computa- 
tional model cannot reach high efficiency on massively par- 
allel architectures. The proposed solution is designed for 
distributed memory multiprocessors, and applies a dataset 
allocation strategy which depends on the local memory size 
and the dataset resolution thus permitting best efficiency 
and data distribution. 
The algorithm works on both vmel-based and cell-based 
datasets, and. runs on a hypercube multicomputer. 

The paper is organised as follows. The following section 
outlines the state of the art in parallel volume rendering. 
The parallelization and data partitioning strategies are pre- 
sented and evaluated in the third Section. Then, a detailed 
description of the proposed solution to parallel ray tracing 
of voxel datasets is presented. Finally, results and conclud- 
ing remarks are reported. 

TOWARDS INTERACTIVE 
VISUALIZATION 
Visualizing volume datasets requires expensive computa- 
tion, due to the complexity of both the algorithm and the 
datasets. The practical every day use of visualization as 
an analytical tool requires interactive dialogue between the 
user and the visualization system; therefore, image synthesis 
time is a critical issue. 

A number of specialized and/or parallel architectures de- 
signed for volumetric rendering have been proposed, and a 
brief classification and description follows. Some of them 
are described in detail in the survey by Kaufman et al. [q] 
and Stytz et al. [18]. 

0 Special-purpose architectures 
The CURE architecture is characterized by an origi- 
nal memory organization and uses a multiprocessing 
engine. CUBE allows parallel access and processing 
of voxels beam with a ray-casting based rendering ap- 
proach. 
The INSIGHT system represents voxel datasets by 
means of a data compression scheme (the octree 
scheme) and uses a specialized processor to apply a 
Back-to-Front traversal of the octree nodes. 
These architectures as well as others such as the PAR- 
CUMsystem, the VOXEL Processor and the 3DP4 ar- 
chitecture have not yet been developed in full scale and 
only medi.um resolution prototypes or software simula- 
tors are currently available. 

0 Implementations on general-purpose multipro- 
cessors 
The CA RVUPP system [24] generates shaded images of 
a single iso-valued surface from volumetric datasets us- 
ing a Front-to-Back projective approach. The system 
was developed with an INMOS Transputer network and 
is part of a medical imaging workstation. 
Both ray t,racing and projective approaches were paral- 
lelized by Challinger [3] on a shared memory multipro- 
cessor (a BBN TC2000). The ray tracing implementa- 
tion is based on the partition of the image space, with 
the pixels computed independently on different nodes. 
A projective approach to rendering orthogonal views 
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Figure 1: Partitioning strategies for a voxcl dataset. 

was implemented by Schroeder and Salem [17] on a 
data-parallel computer (a Thinking Machine CM-2). 
A ray casber which works on multiprocessor worksta- 
tions was proposed by Fruhauf [7]. The system is based 
on the transformation of the dataset from modeling 
space to vi,ewing space. Rays are then casted by sepa 
rate processors with ray direction always orthogonal to 
the viewing plane. 

PARALLEL RAY TRACING OF 
REGULAR DATASETS 
In our project we concentrated on the parallel design of a RT 
algorithm to visualize voxel datasets on distributed-memor,y 
MIMD architectures. There are two aspects which warrant 
careful evaluation in order to give an efficient parallel imple- 
mentation: parallelizing and data partitioning strategies. 

Parallelizing and data partitioning strategies 
Badouel, Bouatouch and Priol [l] classified the paml1elizin.g 
strategies for RT by focusing on the kind of data transmitted 
on the processor interconnection network. This classification 
can be assessed for volume RT as follows: 

parallelism via image partition (also known as: 
parallelism without dataflow, or parallelism on pix- 
els): a standard sequential RT implementation and the 
whole scene are replicated on each processing node. A 
partition of the image space identifies the subset(/s;l 
of pixels that each node will independently synthesize. 
Implementations are straightforward and scalable, but 
the memory requirements are often prohibitive. 

parallelism with ray dataflow: the scene data are 
partitioned and distributed to the processors. Each 
processor traces each ray in the local partition only. 
Each non-resolved ray is transmitted to “adjacent” pro- 
cessors for further tracing. The parallelization of RT 
sequential code is a complex task. 

parallelism with object dataflow: a partition of 
the image is assigned to each processor, which locally 
traces and resolves each assigned ray. As in the pre- 
vious strategy, scene data are partitioned among the 
processors, and an emulation of shared memory based 
on the transmission on request of data is therefore re- 
quired. In volume RT the transmission of portions of 
high resolution datasets may involve large overhead and 
therefore this strategy is not at all effective. 

parallelism on intersections: for each ray, a number 
of slave processors computes the ray-primitive inter- 
sections and returns them to a master, which sorts the 
intersections and computes shading. This strategy can- 
not be applied to volume RT, due to the simplicity of 
voxel tracing versus the higher cost of inter-node com- 
munications and the implicit ordering in voxel tracing. 
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Figure 2: A scalable parallel system based on a hybrid approach. 

In volume RT the possible choices are therefore limited 
to image partition or ray dataflow. 

Partitioning a regular dataset is extremely simple because 
of the homogeneous and regular spatial distribution of the 
data. Some partitioning strategies are sketched in Figure 1: 
one-dimensional partitioning (slice partitioning) with the 
dataset divided into slices by using a set of parallel cut- 
ting planes; two-dimensional and three-dimensional parti- 
tioning, generated by means of 2D or 3D grids of orthogo- 
nal cutting planes or by the recursive subdivision in quad- 
rant/octants. All of these strategies can be used to produce 
regular or adaptive partitions of the dataset. 
A ray tracer based on parallelism with ray dataflow entails 
subdividing the dataset, and therefore inter-node communi- 
cations will be required for each ray that exits a partition 
allocated on one node and enters into an adjacent one. Each 
partitioning criterion implies different communications pat- 
terns between the RT processes. A bi-directional logical 
channel must connect each pair of nodes managing adjacent 
partitions, thus leading to a logical ring interconnection for 
the slice partitioning and 2D or 3D mesh interconnections 
for 2D or 3D grid partitioning, respectively. 
The topology of the underlying architecture generally influ- 
ences the partitioning criteria. Due to the high number of 
messages interspersed with computations, an effective design 
of a parallel my-dataflow RT algorithm must preserve com- 
munications locality by mapping the processes which hold 
adjacent partitions on neighbouring nodes in the hardware 
topology. A 3D grid partition strategy, for instance, is cer- 
tainly not optimal if implemented on architectures with a 
lower dimensional topology (e.g. transputer-based architec- 
tures). Moreover, the more complex the interconnection is, 
the more complex will be the correct management of inter- 
node communications and deadlock prevention. 

A hybrid parallelization approach to achieving 
high scalability 

The choice of a parallelism with ray dataflow to render 
volume datasets is justified by the following considerations: 

l the huge amount of memory needed to represent high- 
resolution voxel datasets, even if the datasets have been 
previously classified and compressed, makes partition- 
ing and distributing the data a must. This is due to 
the limitation of the local RAM space and the lack of 
virtual memory management common to most multi- 
computers. 

s regular dataset subdivision into distinct partitions is 
simple and does not involve all the problems inherent 
in boundary or CSG scene partitions (e.g. elementary 
primitive spanning more than one partition). 

l visual realism is not as important as in high-quality 
rendering. Users of volume rendering applications are 
generally more concerned with knowledge of the rep- 
resented phenomena than with excessive realism. This 
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Figure 3: Allocation of the voxel dataset on the processing nodes 
(in the example, a configuration with four nodes per cluster is 
shown). 

means fewer number of rays generated in the image 
synthesis process and fewer ray transmissions on the 
communications network, and thus lower communica- 
tions overhead and simpler load balancing. 

Adopting a slice partitioning strategy is justified in 
terms of ease of implementation, management and load bal- 
ancing, as the following points show: 

l partitioning the dataset into slices and transmitting 
them to the processing nodes is straightforward; 

l the communications pattern between nodes is very sim- 
ple; 

l the simple partition criterion also allows extremely sim- 
ple load balancing, based on dataset partition modifi- 
cation. By shifting the cutting planes, the node load 
can be easily optimized without altering the adjacency 
relation between nodes. 

Due to communications overhead, the scalability of a 
slice-based RT is low. However, the exploitation of high 
parallelism (e.g. 10’ or more processors) is prevented even 
if different partitioning strategies (e.g. 2D or 3D grids) are 
applied. The relative simplicity of tracing regular datasets 
makes the trade-off between computation and interprocessor 
communication extremely costly, as the mean length of the 
ray traced by each node is reduced to a few tenths of voxels. 
Whichever partition criterion is chosen, effective scalability 
of the ray dataflow solution is unlikely to be achieved by 
simply increasing the number of partitions, with the resolu- 
tion of the data unchanged. In other words, only when the 
dataset resolution increases can a proportional increase in 
the exploited parallelism be gained through finer partition- 
ing of the dataset space. 

Following the above guidelines, a highly parallel volume 
raytracing system can only be designed by applying a ray 
dataflow approach within an image partition approach 
(Figure 2). The computing nodes can be organized into a 
set of clusters, each of them composed of the same number 
of nodes. The image space is partitioned and a subset of 
pixels is assigned to each cluster, which will compute pixel 
values independently. Each cluster is composed of a set of 
co-operating nodes, working under a my dataflow approach. 
The dataset is replicated on each cluster, and is partitioned 
among the local memory of the cluster’s nodes. In order to 
optimize global efficiency the number of nodes per clusters 
is chosen as a function of dataset resolution. 
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VOLUME RT ON A HYPERCUBE 
ARCHITECTURE 

The proposed hybrid solution was implemented on a highly 
parallel hypercube multicomputer, an nCUBE 2 system, 
model 6410, populated with 128 processing nodes each with 
4 Mbytes of local memory. Running at a clock rate of 20 
MHz, the nCUBE node processor is rated at 7.5 MIPS and 
3.3 MFLOPS, single precision, or 2.4 MFLOPS, double pre- 
cision. The datasets are stored on the nCUBE file system in 
four one-Gbytes disks which are managed by the same num- 
ber of I/O processors. Due to the lack of a graphics board, 
the images computed on the hypercube are visualized under 
the X11 environment of the host workstation. 

The software architecture 

The proposed parallel algorithm derives from the volume RT 
algorithm described in [13]. 
The parallel algorithm was designed by using a hybrid im- 
age partition - my dotafiou, approach leading to a set of 
processes which communicate following a mesh pattern. 
To embed the process graph into the hypercube topology 
(Figure 3), the P = 2k nodes of the parallel system were log- 
ically divided into m = 2’ clusters, composed of cd = 2k-i 
nodes interconnected in a ring (cd=cluster dimension). Such 
an embedding can be built so that the neighbourhood rela- 
tions are preserved [15]. 
The image synthesis process is divided among clusters with 
a without dotafioa approach. The strategy chosen to par- 
tition the image between clusters is extremely simple: the 
image is divided into rows of pixels; row ri, with 1 5 i < N 
and N * N the image resolution, is assigned for computa?ion 
to the (i DIV m)th cluster. The resulting load is balanced 
because the time for the synthesis of rows which are adja 
cent or close in the image is nearly equal, if the hypothesis 
of N >> m holds. 

The same code runs on each processing node, known as a 
worker. Each worker computes its cluster number and po- 
sition inside the cluster with simple transformations of the 
hypercube nodeid (the identification code assigned to each 
node) [15]. 
The tracing process is parallelized at the cluster level with 
a ray dataflow approach. The dataset is partitioned into 
slices, and each slice sj of the volume data is replicated on 
the local memory of the node wj on all the clusters (Fig- 
ure 3). The position inside a cluster of a node univocally 
identifies the dataset slice assigned to it. Each node can 
therefore asynchronously load the data subset contained in 
the assigned space partition from secondary storage. 

Volume ray tracing consists of a simple incremental scan 
conversion of the ray in order to identify all of the voxels 
which are crossed by the ray. 
For each sampling point on the ray, the algorithm reads from 
the voxel dataset or interpolates the sampling point value 
on the cell dataset. If the algorithm detects a threshold 
crossing, the ray has traversed an iso-surface and shading 
computation is applied. Depending on the transparency co- 
efficient associated with the field value, ray tracing is either 
stopped or continues to search for other threshold voxels. 
If the ray exits the space partition assigned to the worker 
without hitting any threshold voxel, two different outcomes 
can occur. If the ray enters the partition assigned to an adja, 
cent worker, the current worker stops tracing and transmits 
the ray description to the adjacent one. The adjacent worker 

will continue tracing that ray in its dataset partition. Oth- 
erwise, if the ray exits from the global bounding volume of 
the dataset, tracing stops and the color contribution of the 
ray is computed. 

Each worker manages the generation of all the primary 
rays assigned to its cluster. It intersects each ray with the 
bounding volume (buoy) of the dataset. If the first ray-bvol 
intersection is located on the frontier of the local partition, 
then the worker starts tracing it, otherwise the primary ray 
is rejected. 
The drawback of this distributed primary ray generation 
strategy is that for each pixel row assigned to the cluster, 
the associated primary rays are generated and checked on all 
the worker nodes in the cluster. Alternatively, using a urn- 
tmlized strateg:y, primary rays can be generated and tested 
for intersection on a single node (e.g. on the host) and each 
ray transmitted to the worker whose space partition is tra- 
versed first by the ray. 
The centralized strategy leaves the nodes active on effective 
tracing only. On the other hand, the distributed policy in- 
volves a significant reduction in communications overhead. 
Since primary rays are generated on request, workers do not 
need to read them from the communications buffer of the 
node. The advantage is lower size and faster management 
of the communications buffer, because the nCUBE system 
primitives testing for the presence of, or getting messages 
from, the communications buffer have a complexity propor- 
tional to the buffer size and the number of messages cum- 
rently pending. 
A distributed strategy enables generating primary rays ton 
each node when no ray tracing requests from adjacent nodes 
are pending in the communication buffer. This solution pos- 
itively affects both load balancing and deadlock preventian. 

The recursive RT process can be completed by a single 
node wi, or distributed on a number of co-operating nodes. 
If it is possible to trace the whole ray tree in the Wi space, 
the color contributions of these rays are composed to give 
the resulting pixel value. Otherwise, each ray rk in the tratc- 
ing tree, which exits the space partition of wi and enters 
those of an adjacent node wj, has to be transmitted to lwj 
for further tracing. At this point, wi has to wait for a ray 
descriptor, relative to rk and containing its computed color 
contribution, to return from wj. In order to prevent active 
waiting, wi saves the current state of the computation on a 
primary ray descriptor and starts tracing another ray. 
The worker process will terminate the computation of the 
pixel color associated with that previous primary ray when 
it receives a ray descriptor containing the resolved rk and 
its color contribution from a node of the cluster. 
Shadow rays are managed the same way as transparency 
rays: if they cannot be completely traced in the current 
partition, they are transmitted to the adjacent node a:nd 
the worker saves the current tracing status in order to re- 
store it as soon as the resolved ray descriptor is received. 
The worker manages a list of partially processed primary ray 
descriptors. Each of these contains: the primary ray direc- 
tion, its starting point and, if necessary, the resolved inter- 
section ~1, the generated secondary rays and their respective 
intersections, etc. All this status information results in a fur- 
ther list of descriptors, one for each non-resolved secondary 
ray. 
The efficiency of the system might be increased by the use 
of 3D shadow buffers, as proposed in [4]. The use of this 
technique bring about a reduction of the secondary rays to 
be traced and consequently of the internode communica- 
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tions. Nevertheless, the increased memory requirements of 
this technique (to storing the 1 3D grids of shadowing info, 
with 1 the light source number) make it mandatory to par- 
tition the data and adopt of a ray dataflow strategy. 

Each primary ray descriptor is created dynamically as 
soon as a worker starts to trace a primary ray. The lit 
is then held in the local memory of the worker which finds 
the first intersection of the primary ray with a threshold 
voxel. The primary ray descriptor is therefore created by 
the worker wi, which starts to trace the ray, and then trans- 
mitted to the adjacent worker if wi does not find an inter- 
section in its partition. 

Once all rays associated with a primary ray are traced, 
the pixel color is computed on the basis of the threshold 
voxels intersected, the characteristics of the associated iso- 
surfaces and the normal vector approximated at the inter- 
section points pi. 
The normal vector at point pi is approximated by using an 
object-space gradient method [19] with the gradient com- 
puted from the value of a set of voxels at a distance of p 
steps from pi in voxel-based datasets, or as the field gradi- 
ent, in cell-based datasets. If pi is on the boundary of the 
partition, then some of the required neighbouring voxels/cell 
nodes might be in the adjacent node’s local memory. In or- 
der to avoid the necessary management of these requests for 
external voxel values, and the associated overhead, we allo- 
cate to each worker a dataset slice which is larger than the 
associated partition (i.e. g voxel planes larger on both sides 
where g is the maximum width of the 3D interval needed for 
gradient computation). 

The current implementation can be easily extended to 
apply a cornpositive approach instead of a surface-searching 
one. System performance should not be significantly altered 
when a cornpositive shading model is used. 

Deadlock prevention and termination algorithms 

A peculiar characteristic of parallel raytracers with ray 
dataflom are deadlock occurrences and the fact that each 
tracer process cannot locally determine its termination. 
Deadlocks may occur between two or more workers in a 
cluster in the case they form a cyclic dependency when wait- 
ing for messages, and no message can advance toward its 
destination because the nodes’ communications buffers are 
full. A slice partition strategy may cause cyclic dependency 
between workers even if the flow of all the rays follows the 
direction of the view (i.e. the user has positioned all light 
sources so that shadow rays are traced in the same direction 
as the view direction). In fact, the resolved secondary rays 
with their color contribution return to the workers in which 
the first intersection of the primary ray was found. 
To avoid deadlock it is therefore necessary to prevent the 
node communications buffers from being filled up. In our so- 
lution the node communications buffer cannot be exhausted 
because we have designed a monitoring mechanism based on 
acknowledgement of the receipt of messages from the des- 
tination workers. Each worker manages a set of counters 
ni to trace the messages sent to a destination but not yet 
received by the receiver. The counter ni increases when a 
message is sent to worker wi and decreases when the node 
receives the acknowledgement message ack from wi. Each 
worker can send a new message to Wi only if ni is lower than 
a value i,,, which is determined as a function of the size 
of the communication buffer, the size of messages and the 

Primary rays’ flow 

Figure 4: Termination management via termination token trans- 
mission (in the example, the view point is on the left of the 
dataset, hence the primary ray propagation is in the direction 
shown). 

number of workers in a cluster. hrthermore, the worker 
can begin to trace a new (primary or secondary) ray only 
if the relation ni + rimor < i,,, holds, where rimcl= is 
the maximum number of potential communications to the 
worker wi required to trace that ray. The value of rimor can 
be simply computed as a function of the type of ray and the 
number of light sources in the scene. 
If a worker cannot trace a new ray, it waits to receive ack 
or ray messages from the other nodes. In order to increase 
efficiency, priority is given, in this order: to ack messages, 
resolved ray descriptors and new rays coming from adj, 
cent workers. Only when the buffer of incoming messages is 
empty does a worker generate a new primary ray and begin 
to trace it. 

The particular organization of the proposed solution 
makes the termination algorithm extremely simple. Ter- 
mination control is managed by using m termination tokens, 
one for each cluster (Figure 4). On each cluster, the ter- 
mination token is generated by the node w whose dataset 
partition is nearest to the view point (i.e., node w is wl or 
w,,). The tokens are transmitted between cluster nodes fol- 
lowing the direction of propagation of primary rays. Each 
node wj receives the token and transmit it to the adjacent 
node as soon as all the pixels associated with the primary 
rays generated by wj are rendered. The node which is fur- 
thest from the view point transmits the token to the host 
upon termination of local pixels rendering. 
The host terminates the run as soon as it receives the mth 
token, with m the number of clusters. 

Load balancing 

Dynamic load balancing methods generally involve a high 
degree of message interchange in order to synchronize and 
move data between nodes. In some cases the strategies are 
complex and require partition modification and dynamic re- 
allocation of the data. Furthermore, it is difficult to manage 
the frequency of load redistribution and the behaviour of the 
system under multiple partition redistribution. 

The technique we implemented is a static technique sim- 
ilar to that proposed by Priol, et al. [14]. It is based on 
redistribution of the data depending on the estimated work- 
load of each processor. As describdd above the initial data 
partitioning is uniform. To choose a more effective distri- 
bution of the dataset the host asks one cluster to trace a 
subset of primary rays, regularly distributed on the image 
plane (for example a regular grid of 16 * 16 or 32 * 32 rays). 
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On the basis of the total time ti spent by the worker Wi to 
trace these test rays, the host defines a new subdivision of 
the dataset, with size[i] of the new partition computed as: 

si=[i] = sin-+] + (tmean - ti)/tsingle-plane 

where t,,,,, is the mean processing time on the worker 
nodes, and. Isinglc--plane = C(ti)/n, with n the resolution 
of the dataset on the X axis. 
In order toI achieve the new distribution, each worker node 
transfers data to (and/or acquires it. from) its neighbour 
nodes; this data transmission process is performed in par- 
allel by the workers of each cluster. The technique is effec- 
tive, because the redistribution time is much lower than the 
image synthesis time. The substantial speedup obtained is 
reported in Table 3. 

Scalability 

In designing the system one of the main goals was the ef- 
ficient exploitation of high parallelism. To achieve optimum 
system scalability, the flexibility of the hybrid parallelism 
has to be carefully exploited. In fact, depending on the 
specific characteristics of the datasets to be visualized and 
on the requested visualization parameters (i.e. lights, pro- 
jection and. view settings), a particular parallelism strategy 
and degree may result in lower image synthesis time. So, for 
each visualization request, the user selects the dimension p 
of the hypercube to be used and the number of clusters in 
which the cube has to be configured. For example, the user 
can choose to synthesize the image following a pure image 
partition approach by selecting a unitary dimension for the 
clusters; on the other hand , a pure my doto~om opprooch 
can be applied by configuring the system as a single clus- 
ter of 2J’ nodes. The flexibility of the system allows for the 
selection of the most suitable parallelization scheme, which 
results in higher efficiency and interactive time in image syn- 
thesis. 

The host interface 

The host workstation has management and I/O functions 
only. It manages two main activities: (a) input file scanning 
and hypercube management, (b) result (images) collection 
and timing. 

(a) 1nnDut file sconnino: the host reads in the inDut file soec- 
ified by the user, which contains the selection of one or 
more datasets plus the related visualization specifica- 
tions. For each selected dataset the user specifies one 
or more set of visualization parameters (i.e. projection 
and view settings, threshold surface coefficients, etc.) 
and the dimensions and configuration (i.e. the number 
of clusters) of the hypercube to be used for the syn- 
thesis of the image. For each dataset to be visualized, 
the host allocates the requested hypercube, loads each 
node with the executable worker code and broadcasts 
the visualization parameters specified by the user to 
the worker nodes. 

(b) Images and timing collection: the workers trace the 
image and send the evaluated pixels to the host node. 
To minimize overhead, the workers accumulate pixel 
values and transmit pixel sets to the host with a single 
message. At the end of the image synthesis process, 
each worker sends monitoring and statistical data back 
to the host. 

RESULTS 
Results showing the system’s effective exploitation of paral- 
lelism are presented in Table 1. The table contains the times 
relative to the image synthesis at a resolution of 350x250 
from a 97x97x116 dataset which represents the electron d.en- 
sity map of an enzyme (SOD, Super Oxide Dismutase). The 
dataset has been chosen for its wide-spread use, in order to 
facilitate comparison with other experiences. 
The test images, reproduced in Figure 5, are generated with 
a view direction which forms a 45 degree angle with the Z 
and X axes and orthogonal to the Y axis. The projeciion 
of the dataset on the image plane covers an area of 301x194 
pixels, and the distance between ray samples is l/2 of the 
cell edge. 

Both times and efficiencies are in Table 1. The analysis of 
the efficiency is more suitable for evaluating system perfor- 
mance because the actual times suffer from both the limited 
speed of the nCUBE node processor with respect to the 
more powerful RISC workstation processors and the 1ac:k of 
optimization of the sequential raytracer used. No accelera- 
tion techniques, such as Levoy’s octree [ll] or that proposed 
in [13], are used in the current implementation; the system 
is amenable to acceleration techniques which should re.sult 
in performance enhancements similar to those reported for 
sequential raytracers. 

Table 2 reports the times and the efficiency measured1 on 
the same dataset of Table 1 using a different configuration of 
the hypercube nodes: the hypercube dimensions are fixed, 
and the number of nodes in each cluster decreases from 16 
to 1. 

Table 3 reports the times and the efficiency measured on 
the same dat,aset, with and without the use of the load bal- 
ancing option. 

Table 4 presents the profile analysis of a run on a single 
cluster composed of 16 nodes. The dataset and image char- 
acteristics are the same as the previous tables, and therefore 
the use of a 16 node cluster involves the not negligible com- 
munication overhead shown. Only the percentage times of 
the more time consuming procedures are reported. Nest 
is the system function used to test the presence of mes- 
sages in the communication buffers; nreod and nwrite are 
the communication primitives, the classical CSP send and 
receive; Trace implements ray sampling; Interpolate interpo- 
lates the cell-based dataset to compute sample point values; 
VozelSample manages threshold searching and shadin,g. 

The synthesis of 1024x768 images of the SOD dataset, 
with the distance between ray samples equal to l/5 of the 
cell edge (the projected dataset containment box is 748x482 
pixels wide), requires 1’20” with efficiency 0.82 using all 128 
nodes of the hypercube. 

CONCLUSIONS 
A proposal for a distributed-memory parallel system to ren- 
der volumetric datasets has been presented. The methodol- 
ogy and parallelization strategy followed in the system de- 
sign have been described and justified. Using a ray tracing 
approach, the system renders volumetric datasets which are 
coded in a voxel-based or cell-based representation scheme. 
It adopts a hybrid image partition - with my dataflow ap 
preach based on a slice partitioning of the dataset. Sim- 
ple and efficient procedures for minimizing communications 
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overhead, for termination detection and for static load bal- 
ancing have been implemented and evaluated. 

The reported results show that the proposed hybrid paral- 
lelization strategy fulfils the initial goal: the visualization of 
high resolution volume dataset on MIMD distributed mem- 
ory architectures which are characterized by a low I/O band- 
width and a reduced amount of local memory. More than 
the actual run times, which suffer from shortcomings of the 
base algorithm used, the efficiency obtained for such a highly 
communicating algorithm (0.74 on 128 nodes) is higher than 
those reported elsewhere and validates the correctness of the 
design choices. 
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Tlmmgs 11 tame speedup e f f wxency 

Table 1: Times (in seconds), speedup and efficiency of the visu- 
alization of the SOD dataset with increasing number of nodes. 

Cluster size 16 8 4 2 1 
64nodeq t:mes 24.16 17.16 11.93 10.10 8.90 
effrclency 0.31 0.44 0.64 0.75 0.85 

128nodes, tames 12.32 8.77 6.70 5.14 6.42 
effwtency 0.31 0.43 0.57 0.74 0.59 

Table 2: Times (in seconds) and efficiency measured on the SOD 
dataset with decreasing cluster size. 

Cluster size 16 8 4 2 
64nodes 
standard times 24.16 17.16 11.93 10.10 
64nodes 
balanced times 15.20 12.26 10.26 9.27 

128nodes 
standard times 12.32 8.77 6.70 5.14 
128nodes 
balanced times 7.94 6.56 6.04 4.75 

Table 3: Comparison between the times (in seconds), with or 
without the adopted load balancing technique, for the visualiza- 
tion of the SOD dataset with decreasing clusters size. 

rofilmg eon 

~~ 

Table 4: Profile analysis on a single 16-node cluster. 
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