Web Spam Taxonomy

Zoltán Gyöngyi, Hector Garcia-Molina Stanford Digital Library Technologies Project, 2004

presented by

Lorenzo Marcon

Objective of a search engine

Providing results for a query:

<u>relevance</u>

similarity between documents and query

<u>importance</u>

query-independent popularity (e.g. link structure)

Ranking: estimates the VALUE of a page

altering the <u>relevance</u> or <u>importance</u> of a page without improving its true value

misleading search engine into ranking

Boosting techniques and objectives

Term spamming: altering relevance

Link spamming: altering importance

Term spamming (relevance)

Based on TFIDF metric:

- **TF(t):** *term frequency,* the number of occurrences of term t in the document
- IDF(t): *inverse document frequency*, related to the number of document in the collection that contain t

$$TFIDF(p,q) = \sum_{t \in p \text{ and } t \in q} TF(t) \cdot IDF(t)$$

repeating some targeted words

making a page very relevant for a specific query

adding a **large number** of distinct terms

making a page relevant for a large number of query

Altering TFIDF

- Spammers don't have real control over terms IDF
- Some search engines ignore IDF scores altogether

increasing TFIDF = increasing TF

Term spamming: where ?

• Body spam

spam terms included in document body

• Title spam

higher weight than body

Meta tag spam

heavy spamming, low priority

<meta name="keywords" content="buy,cheap, cameras,lens,accessories,nikon,canon">

Term spamming: where ?

Anchor text spam

terms are added to the *target* page

free, great deals, cheap, inexpensive, cheap, free

• URL spam

url splitted to get page relevance

buy-canon-rebel-20d-lens-case.camerasx.com buy-nikon-d100-d70-lens-case.camerasx.com

Term spamming: how ?

Repetition

terms are repeated to get increased relevance

Dumping

including large sets of unrelated (and rare) words

easy to filter

Term spamming: how ?

Weaving

adding spam terms at random position within text

Phrase stitching

merging phrases from different contexts or sources

harder to filter!

Based on web graph structure

Basic idea: people link pages they consider important on their sites

the value of a page is (also) relative to incoming links

Ranking algorithms: HITS

Assigns two values to each page:

- *Hub score*: links to important authority pages
- <u>Authority score</u>: linked by important hubs

circular definition

Ranking algorithms: HITS

increasing *hub* score:

Adding many links to important sites (www.cnn.com, www.mit.edu) to the **target page t**.

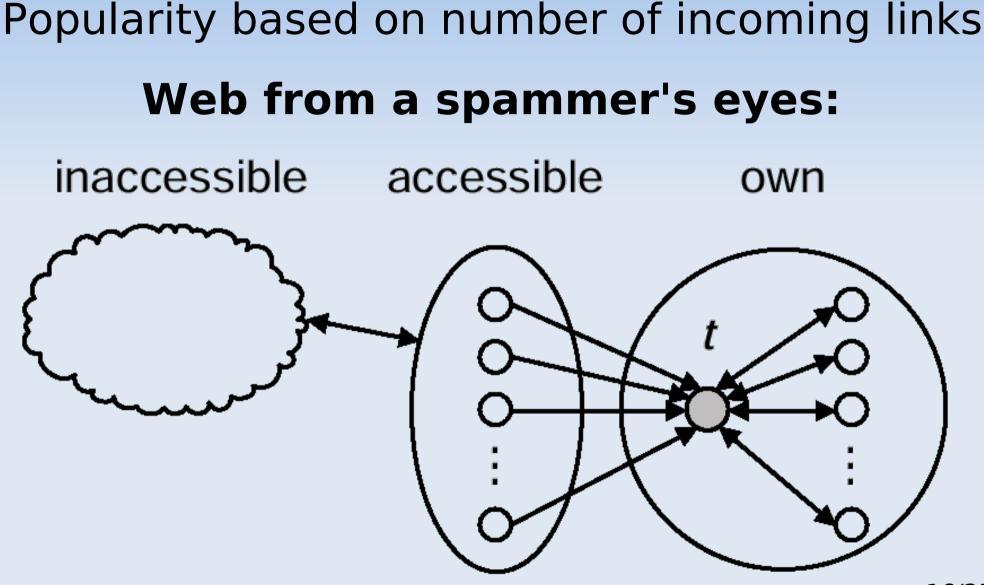
increasing *authority* score:

Increasing the value of *n* hub pages, also adding links to the **target page t**.

Ranking algorithms: PageRank

Ranking factors for a group of Γ pages:

$$\mathsf{PR}(\Gamma) = \mathsf{PR}_{\mathsf{static}}(\Gamma) + \mathsf{PR}_{\mathsf{in}}(\Gamma) - \mathsf{PR}_{\mathsf{out}}(\Gamma) - \mathsf{PR}_{\mathsf{sink}}(\Gamma)$$


 $PR_{static}(\Gamma)$: random jump

 $PR_{in}(\Gamma)$: incoming links

 $\mathsf{PR}_{\mathsf{out}}(\Gamma)$: outgoing links

$PR_{sink}(\Gamma)$: pages without outgoing links

Ranking algorithms: PageRank

Link spamming: techniques

Outgoing links:

- Adding links to well known pages
- Directory cloning

Link spamming: techniques

Incoming links:

- Creating a "honey pot"
- Infiltrating a web directory
- Posting links on blogs, guestbook, wikis, etc.
- Link exchanging
- Buying expired domains
- Creating own spam farm

Hiding techniques: content hiding

Examples:

```
<body background="white">
<font color="white">hidden text</font>
...
</body>
```


(tinyimg.gif is a 1x1 pixel/transparent image)

```
<script language="JavaScript">
document.getElementById("inv").style.display = none;
</script>
```

Hiding techniques: cloaking

Return a page to regular web browsers, another one to web crawlers

- Mantaining a list of IP used by crawlers
- Filtering user agent

Redirecting URL as soon as the page is loaded

<meta http-equiv="refresh" content="0;url=target.html">

easy to parse by SE

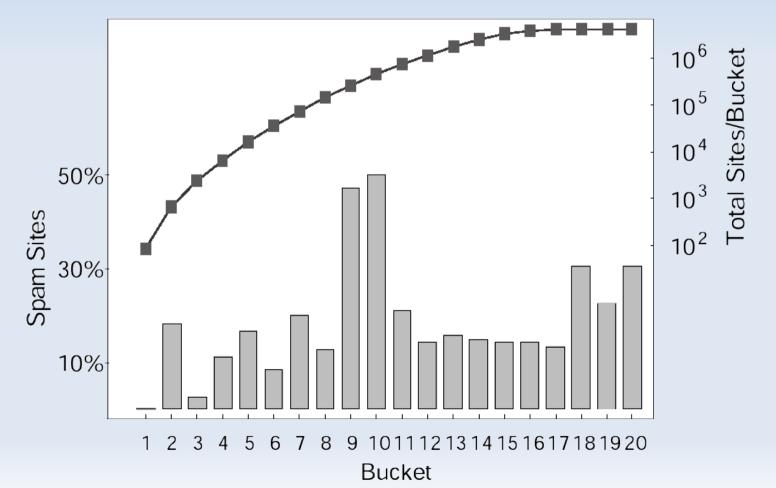
<script language="javascript">
 location.replace("target.html")
</script>

crawlers don't execute scripts

Spam prevalence: statistics

Data set (DS1)

- large set of URLs;
- crawling guided by hash functions;
- manual spam evaluation.


Data set (DS2)

- Single breadth-first search started at the Yahoo! home page;
 manual spam ovaluation
- manual spam evaluation.

Spam prevalence: statistics

Data set (DS3) – Source: AltaVista. Pages grouped into about 31 million websites

Sites ordered using descending PageRank, then splitted this list in 20 buckets

23/25

Spam prevalence: statistics

Data set	Crawl date	Data set size	Sample size	Spam
DS1	11/02 – 02/03	150 million pages	751 pages	8.1% of pages
DS2	07/02 – 09/02	429 million pages	535 pages	6.9% of pages
DS3	08/03	31 million sites	748 sites	18% of sites

- Crawls performed at different times;
- Different crawling strategies;
- Maybe the average number of pages per site is different for spam and non-spam sites;
- Classification of spam could be subjective.

Web content (estimated): 10-15% SPAM

Countermeasures:

- *Identification,* followed by removal of spam pages from indexes;
- *Prevention,* application of various techniques during crawling;
- *Counterbalancing,* variation of ranking methods.