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Abstract

Large-scale Parallel Web Search Engines (WSEs) needs
to adopt a strategy for partitioning the inverted index
among a set of parallel server nodes.

In this paper we are interested in devising an
effective term-partitioning strategy, according to which
the global vocabulary of terms and the associated
inverted lists are split into disjoint subsets, and assigned
to distinct servers. Due to the workload imbalance
caused by the skewed distribution of terms in user
queries, finding an effective partitioning strategy is
considered a very complex task.

In this paper we first formally introduce Term
Partitioning as a new optimization problem. Then
we show how the knowledge mined from past WSE
query logs can be used to fed the objective function
of our optimization problem. In particular, the global
knowledge comes from the frequent patterns extracted
from past usage logs. Finally, we reports many results
to show that we are able to effectively reduce both the
average number of servers activated per each query,
along with the workload imbalance. Experiments are
conducted on large query logs of real WSEs.
Keywords: Frequent Patterns, Term Assignment,
Inclusion-Exclusion Principle, Web Search Engines,
Parallel Information Retrieval, Term Partitioning, Web
Usage Mining, Log Analysis.

1 Introduction

Web Search Engines (WSEs) have permitted users to
face Web information overload, and constitute one of
the most important novelty of the last decade in the
information technology field. Their design has created
many new challenges in the field of computer science,
one of which is to sustain the huge and exponentially
growing amount of data present in the Web.

In order to improve the Web experience, it has be-
come very important to learn about the users’ behavior.
This is useful not only for personalizing Web informa-

∗Dip. di Informatica, Univ. Ca’ Foscari di Venezia, Venezia,

Italy - {clucches,orlando}@dsi.unive.it
†ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy -

{r.perego,f.silvestri}@isti.cnr.it

tion, but also for purposes concerning the management
and efficiency of Web servers.

In this paper we are interested in improving the
efficiency of a large-scale parallel WSE, through the
exploitation of the knowledge about its past usage, in
turn obtained by mining the logs of user queries [6,17].

WSEs use a data structure named inverted index
for efficient retrieval of the documents satisfying a given
query. Both for scalability, and high throughput, they
are deployed on large clusters of servers, and therefore
the inverted index has to be partitioned and each
partition searched for the relevant results in parallel [3].

Due to recent proposals of a pipelined architecture,
the term partitioning approach is now attracting some
attention again [11, 13]. According to this partitioning
strategy, the set of terms occurring in the index, i.e.
the lexicon, is partitioned among the servers, and each
server is able to discover only the documents containing
a subset of the lexicon. The strategies proposed so
far suffer from a significant load imbalance, due to the
skewed distribution of terms in user queries and indexed
documents.

Our first achievement is a general performance
model of a term partitioned WSE. This allowed us to
formally define Term Assignment as an optimization
problem that aims at finding the best partitioning of
the lexicon. Differently from previous works, we require
a good partitioning of the lexicon not only to maximize
the throughput by evenly balancing the workload, but
also to minimize the average response time.

Secondly, we show that it is possible to find a trade-
off between the above two goals by mining usage data
from query logs. In principle, it is possible to reduce the
number of queries answered by each server by assigning
to the same partition those terms that often co-occur
together within user queries. However, the knowledge
about co-occurrence of terms is not directly required to
solve the Term Assignment problem. We show that we
only need to predict the number of queries that include
at least one of the terms assigned to a given partition.
Indeed, this turns out to be an interesting application
of the Inclusion Exclusion principle [10].

Lastly, this formulation of the problem will allow



us to propose an efficient greedy algorithm for approx-
imating the optimum solution to the term assignment
problem, by taking into consideration the most frequent
terms only. Experiments, conducted on large query logs
of actual WSEs, show that a good solution can be found
and that the workload imbalance, which is the main
drawback of a term partitioning approach, can be effec-
tively reduced.

The rest of the paper is organized as follows.
Section 2 introduces some Web information retrieval
background, while Section 3 proposes a framework for
evaluating term-partitioning strategies, and formally
states our term-assignment problem and its objective
function. Section 4 discusses in details the issues related
to the knowledge that must be extracted by past query
logs. In Section 5 we discuss the heuristic algorithms
proposed to address the term-assignment problem. The
experimental results are discussed in Section 6. Finally,
Section 7 draws some conclusions and future work.

2 Web Information Retrieval Background

WSEs use an index structure called inverted index,
which allows the efficient retrieval of documents contain-
ing the particular set of terms specified in a user query.
An inverted index consists of a vocabulary where each
term t is associated with an inverted list lt storing the
identities of all the documents in the collection that con-
tain t, plus possibly some additional information about
each occurrence.

In a parallel WSE, the inverted index is partitioned
among a set of servers, each holding a subset of the
whole index. When each sub-index is relative to a dis-
joint sub-collection of documents, we have a Local, or
Document Partitioned, index organization. Conversely,
when the whole index is split so that each partition
refers to a subset of the distinct terms contained in all
the documents, we have a Global, or Term Partitioned,
index organization. In both cases, in front of the IR core
servers, we have an additional machine hosting a bro-
ker, which has the task of scheduling the queries to the
various servers, collecting and ranking the results, even-
tually producing the final list of matching documents.

Figure 2, shows the logical organization of a WSE,
where k is the number of servers hosting IR core
modules, q the number of terms in a given query, and r
the number of ranked results returned for the query.

In a document-partitioned WSE, the broker loops
taking a query out of the query stream and broadcasting
it to all the p servers. Each server locally evaluates
the query using its own index partition, and returns
to the broker the r top-ranked documents retrieved.
The broker then merges the p · r local answers, in
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Figure 1: Organization of a parallel WSE.

order to choose the globally most relevant r results,
which are finally returned to the requesting user. Since
all the servers contribute to the processing of each
query in parallel on their own subindexes, the load is
almost evenly distributed. The processing of each query
involves a communication volume proportional to p · r,
and requires p·q accesses to the index in order to retrieve
on each server the inverted lists of the q terms of the
query.

In a term-partitioned WSE, for each query the
broker has to select the servers holding the inverted
lists relative to each of the q terms of the query. In
the worst case, each one of the q inverted lists is held
by a distinct server, but, on average several terms may
be assigned to the same server, and the total number
of servers involved is likely to be q′ ≤ q. Therefore, the
broker has to split a query into q′ subqueries, and send
them to the corresponding servers. Each subquery is
composed of the terms which are stored in the server it
is sent to. When a server receives a subquery, it retrieves
from the disk the inverted lists related to its subquery.
In case the subquery contains more than a single term,
the server intersects the associated inverted lists, and
rank the partial results. Unfortunately, document
ranks computed locally by each server might not be
significant, since only a portion of the whole query has
been considered. Thus the whole list of partial results
has to be sent, in principle, to the broker. On the basis
of the global knowledge of all partial results, the broker
can finally perform ranking, and choose the r most
relevant documents. Per–query communication volume
is thus proportional to I, where I is the sum of the
lengths of the inverted lists of all query terms. However,
only q′ servers are involved in serving the query, and
the number of disk accesses is equal to the number of
query terms q. It is worth noting that, with respect
to the document-partitioned approach, the broker has



much more work to do, and it may become a system
bottleneck.

Several papers investigated partitioning schemata
for the inverted index [2–5,7–9,13,15,16]. Since in large
scale IR systems disk access time may be a significant
part of query-time, the term-partitioned approach is
attractive because it minimizes disk activity [16]. Note
that this activity takes place when the index partitions
are very large with respect to the disk buffer cache
available in main memory. On the other hand, the high
computational load in the broker can starve the system.
In addition, load imbalance may become a serious issue.
Implementations of term-partitioned systems usually
subdivide the vocabulary either randomly, or according
to the lexicographic order of terms. In [8] the authors
demonstrated that load imbalance can be mitigated by
exploiting the knowledge about the frequencies of terms
occurring in the queries. However, the partitioning
techniques proposed so far fail in granting an even
distribution of subqueries among all the servers. This
is mainly because the frequencies of terms, occurring in
both queries and documents, generally follow a power-
law distribution. Thus, the authors noted that the
servers to which many terms having high popularity are
assigned may be remarkably more overloaded than those
holding less of these popular terms.

Another disadvantage of term-partitioned indexes
is that their management is more complex. Document-
partitioned indexes can be easily and efficiently created
independently by a pool of servers in a parallel environ-
ment. In the same settings, an extra processing step is
instead required to exchange fragment of postings lists
if we want to build a term-partitioned index [15].

In [13], Moffat et al. introduced a novel pipelined
query evaluation methodology, based on a term-
partitioned index, in which partially evaluated queries
are passed through the servers that host the query
terms. The experiments were conducted in a very re-
alistic setting, making use of a large collection of data
(426GB) and a long stream of actual queries. The draw-
back of the new method is once again the poor balanc-
ing of servers workload, which becomes a more serious
problem as the number of index partitions increases.
Due to the data skew present in both query term fre-
quencies and inverted list lengths, the approach based
on document-partitioning assured a better utilization
of the computational resources, and outperformed their
novel methodology.
Nevertheless, pipelined query evaluation seems to have
a great potential. On a large set of queries generated by
randomly choosing terms from the vocabulary, pipelined
query evaluation outperformed by more than 20% the
document-partitioned counterpart. The authors indi-

cated as a future direction of research the exploration
of load balancing methodologies based on the exploita-
tion of term usage patterns present in the query stream.
Such patterns can drive both the dynamic reassignment
of lists while the query stream is being processed, and
the selective replication of the most accessed inverted
lists.

The load balancing problem was also addressed
later in [11], where the authors exploited both term
frequency information and postings list replication to
improve load balancing in their pipelined WSE.

Our proposal goes exactly in the same direction,
and demonstrates the feasibility and efficacy of exploit-
ing a frequent-patterns driven partitioning of the vo-
cabulary of terms among the servers, in order to en-
hance the performance of a term-partitioned, large-
scale, pipelined WSE. We will show that our model
overcomes the performance limits of the previous parti-
tioning strategies.

Finally, it is worth noting that a global index or-
ganization is used also in many Peer-to-Peer environ-
ments indexing textual collections [18]. A Distributed
Hash Table is usually exploited in these environments
to distribute index term entries among the peers and for
query routing as well. In this case a query is processed
in pipeline by the involved peers in a way that resem-
bles the proposal in [13]. Thus, also in this environment
the possibility of reducing the number of peers involved
by opportunely partitioning the index, has great impor-
tance.

3 Term-partitioned Parallel WSEs

Let D = {d1, . . . , dn} be a set of distinct docu-
ment identifiers (DocIDs), univocally associated with
n documents making up a given collection, and T =
{t1, . . . , tm} the set of m unique terms contained in them
(the lexicon). An information retrieval system will an-
swer user queries with the help of an inverted index
I. More formally, we can define this inverted index as
I = {(t, lt) | t ∈ T , lt ⊆ D}, where lt is a postings list
that includes the DocIDs associated with all the docu-
ments that contain term t.

In this paper we are interested in term-partitioned
parallel WSEs. First we introduce p-partitioning, a
mapping function that models how the terms of the
lexicon are distributed among p different servers of a
term-partitioned WSE.

Definition 1. [p-partitioning]
A p-partitioning is a surjective function λ : T →
{1, . . . , p}. λ induces a partitioning T1, . . . , Tp of T such
that:

• Ti = {t ∈ T | λ (t) = i}



• ∀i 6= j, Ti ∩ Tj = ∅
•

⋃
i=1,...,p

Ti = T

The partitioning (T1, . . . , Tp), induced on T by
λ, entails the global partitioning (I1, . . . , Ip) of the
inverted index I, where Ii = {(t, l) ∈ I | t ∈ Ti}.
Each sub-index Ii is eventually assigned to one of the p
different query servers of the WSE.

Table 1: Symbols used throughout the paper.
Description Symbol

Global lexicon of terms T
A generic query Q
Stream of queries submitted Φ
Global inverted file index I
p-partitioning function (Def. 1) λ
Index partition assigned to server j Ij

Lexicon portion assigned to server j Tj

Sub-query solved by server j (Def. 2) Qj
λ

Servers involved in serving Q (Def. 3) Hj
λ

Width of a query Q (Def. 4) ωλ (Q)
Avg. width of queries in Φ (Def. 5) ωλ (Φ)
CPU communication overhead Toverhead

Posting list disk transfer time Tdisk(|lt|)
Computation time for each postings list Tcompute(|lt|)
Workload on server j due to Q T j

λ(Q)

Tot. workload on server j (Def. 6) Lj
λ(Φ)

Tot. workload on all the servers (Def. 7) Lλ(Φ)

Avg. workload on all the servers (Def. 7) Lλ(Φ)

Maximum server workload (Def. 7) bLλ(Φ)
|{Q ∈ Φ | ∃t ∈ X ⊆ T s.t. t ∈ Q}| ρ(X)
|{Q ∈ Φ | X ⊆ Q}|, where X ⊆ T σ(X)

Let Q = {t1, . . . , tq}, ti ∈ T , a generic query
submitted to our term-partitioned WSE, where queries
belong to a query stream Φ of length |Φ|.

Definition 2. [Local Sub-Query]
Let Qj

λ be the subset of terms t ∈ Q that have been
mapped on Ij. Qj

λ can be considered as a sub-query of
Q that can locally be served by server j. More formally:
Qj

λ = {t ∈ Q | λ(t) = j}.

Definition 3. [Hitting Set of a Query]
The hitting set Hλ (Q) of a query Q is the set of index
partitions involved in the resolution of Q in a term-
partitioned WSE. More formally, Hλ (Q) = {j | Qj

λ 6=
∅}.

Definition 4. [Width of a Query]
The width ωλ (Q) of a query Q is the number of different
servers involved in the resolution of Q in a term-
partitioned WSE. Thus, ωλ (Q) = |Hλ (Q)|.

Definition 5. [Average Width over a Query
Stream]
The average width ωλ (Φ) over a query stream Φ is the
average number of different servers of a term-partitioned
WSE involved in the resolution of a generic query Q ∈ Φ
(see Def. 4). Thus, ωλ (Φ) =

∑
Q∈Φ

ωλ(Q)
|Φ| .

3.1 Our Model of WSE Performance. In the fol-
lowing discussion, we assume that our term-partitioned
WSE works according to the pipelined approach recently
proposed by Moffat, et al. [13]. Most of our considera-
tions and assumptions are however valid also for more
traditional term-partitioned WSEs.

In this novel pipeline approach, a query Q traverses
all the servers of Hλ(Q) in a pipeline fashion. Each
server forwards the list of relevant DocIDs, correspond-
ing to the portion of Q processed so far, to the next
server of the pipeline. More specifically, a generic server
j ∈ Hλ(Q) of the pipeline receives this list, and inter-
sects it with the posting lists associated with each term
t ∈ Qj

λ.
It is worth noting that, within this pipeline frame-

work, parallelism is only exploited among different
queries, and not among subsets of the same query, like
in traditional term-partitioned WSEs, where all the sub-
queries Qj

λ are instead processed in parallel. Thus, since
a query may need to traverse several servers, it is also
important to try to reduce the average number of these
servers, in order to improve single-query latency, i.e., a
measure related to the query width ωλ (Q). This can
be done, in principle, by carefully allocating terms and
associated postings lists to the p servers.

In the following we want to give an estimation of the
workload incurred by a generic server and the latency
of a generic query. We have to state in advance that
a WSE is a complex, highly nonlinear environment,
where actual query processing times are characterized
by high variance and may be very hard to predict [12].
Thus, our modeling analysis can be used to understand
the behavior of a WSE, and to roughly identify some
average costs incurred. Our final goal is to use the
estimated measures to devise an optimizing technique
for term placement, aimed at improving the throughput
of a WSE along with the average query latency.

Given the pair (t, lt) ∈ I, in the following we will
indicate with |lt| the length of the list, and we will use
the following symbols:

1. Tdisk(|lt|), which models the time to transfer from
disk the postings list lt;

2. Tcompute(|lt|), which corresponds to the compute
time concerning the postings list lt;

3. Toverhead, which models the CPU time spent by a



server to receive and then send a message.
Obviously the time spent for transferring data from

disk, and for computing on the lists depends on the
length of each list |lt|.

We assume that, for each (t, lt) ∈ Ij , while t
is maintained in main memory, lt is stored on disk.
According to these hypotheses, a rough estimate of the
workload incurred by server j ∈ Hλ(Q) to complete
sub-query Qj

λ ⊆ Q is given by:

T j
λ(Q) = Toverhead +

∑
t∈Qj

λ

(Tdisk(|lt|) + Tcompute(|lt|)) .

In particular, Tdisk(|lt|) may be order of magnitude
larger than Tcompute(|lt|) and Toverhead, due to some
large constants like disk seek and rotation times. If
this is the case, we have that the other terms become
negligible:

(3.1) T j
λ(Q) '

∑
t∈Qj

λ

Tdisk(|lt|).

Conversely, if we consider that, nowadays, typical
sizes of main memories are huge, and that in a WSE
the index I is partitioned to benefit from the aggregate
main memory of a cluster farm, we might also assume
that the OS buffer cache can fulfill most of the disk
requests. In this case, we can approximate T (Qj

λ) as
follows:

(3.2) T j
λ(Q) ' Toverhead +

∑
t∈Qj

λ

Tcompute(|lt|).

Toverhead may be large in comparison with
Tcompute(|lt|), so it may become very significant in the
above formula.

We can finally introduce some measures that can
be used to estimate the throughput of a WSE when fed
with a query stream Φ.

Definition 6. [Per Server Query-Stream Work-
load]
Given a p-partitioning λ, let Lj

λ(Φ) be the whole amount
of work a generic server j has to deal with to process all
the queries in Φ. Thus,

(3.3) Lj
λ(Φ) =

∑
Q∈Φ, Qj

λ 6=∅

T j
λ(Q).

Definition 7. [Maximum, Total, and Average
Load over a Query Stream]

Given the workload estimate Lj
λ(Φ) for each server j,

we can define:

L̂λ(Φ) = max
1≤j≤p

Lj
λ(Φ)(3.4)

Lλ(Φ) =
∑

1≤j≤p

Lj
λ(Φ)(3.5)

Lλ(Φ) =
Lλ(Φ)

p
(3.6)

where L̂λ(Φ), Lλ(Φ), and Lλ(Φ) are, respectively, the
maximum, total, and average workload incurred by the
servers of a term-partitioned WSE to process query
stream Φ.

It is worth remarking that we are supposing that,
even though each query is served by a given pipeline
of servers, multiple queries can be solved concurrently.
Moreover, if each server has a sufficient number of dis-
tinct sub-queries Qj

λ to answer, the communication time
required to transfer queries and partial results among
WSE nodes can be overlapped with useful computa-
tion. Therefore, the communication waiting times do
not affect the throughput of servers, which are main-
tained busy. Under these assumptions, L̂λ corresponds
to the total completion time to answer all the queries in
Φ, and thus the average time to serve a query becomes
proportional to L̂λ/|Φ|. Thus the following hypothesis
holds.

Hypotesis 1. In a term-partitioned WSE with a p-
partitioning function λ, the throughput can be consid-
ered to be

O
(
|Φ|/L̂λ

)
.

Note that if we are able to balance the server
workloads, by finding an appropriate p−partitioning
function λ, this might also reduce L̂λ, thus improving
the throughput of the WSE.

On the other hand, the time elapsed to process a
single query in a pipelined term-partitioned WSE is
strongly influenced by communication costs. Devising a
p−partitioning function that reduces the average width
of queries (see Def. 5) results in a greater number of
terms of the same query processed by the same server,
and thus in a reduction of the volume of data transferred
over the network. We can thus introduce the following
hypothesis.

Hypotesis 2. In a pipelined term-partitioned WSE
with a p-partitioning function λ, the average time



( latency) for answering a generic query Q can be con-
sidered to be:

O (ωλ(Φ)) .

In a heavily loaded environment, like a large scale
Web Search Engine, the throughput – i.e., the number
of queries that the system is able to answer per second
– is usually the most important quantity to optimize
(see Hypothesis 1). From the user perspective, however,
query response time is the most important figure (see
Hypothesis 2). Our thesis is that it is possible to find
a trade-off, and devise an optimizing technique able to
optimize both. In the following Section we introduce our
term assignment problem, aimed to find this trade-off.

3.2 The Term Assignment Problem With the
above definitions and hypotheses we have contributed
a framework regarding the performance of a pipelined
term-partitioned PIRS. In this framework we are going
now to introduce and formalize a novel problem relating
PIRS performance and p-partitioning.

Definition 8. [α-weight] Given a query stream Φ, a
lexicon T , and a p-partitioning function λ, we define
α-weight on Φ according to λ as:

(3.7) Ωλ (Φ) = α · ωλ (Φ)
Nω

+ (1− α) · L̂λ(Φ)
NL

where α, 0 ≤ α ≤ 1, is a parameter that can be
used to tune our α-weight, while Nω and NL are con-
stants aimed to normalize the two factors, so that 0 ≤
ωλ (Φ) /Nω ≤ 1 and 0 ≤ L̂λ(Φ)/NL ≤ 1. Note that, in
both cases 0 (1) is the best (worst) value.

Given Hypotheses 1 and 2, we have that throughput
and query response time can be improved by minimizing
L̂λ(Φ) and ωλ (Φ), respectively.

Unfortunately, these two measures cannot be op-
timized independently. For example, a p-partitioning
that assigns all the terms that appear in Φ to the same
server, would obviously achieve the best value of ωλ (Φ),
but surely a very bad value of L̂λ(Φ).

The α-weight definition allows us to consider both
aspects of the problem, and devise a good tradeoff be-
tween them. Furthermore, the α parameter give us the
possibility of weighting the importance of throughput
and response time in optimizing the p-partitioning func-
tion.

Now we have all the figures needed to define the
Term-Assignment Problem:

The Term-Assignment Problem.
Given a value α, 0 ≤ α ≤ 1, a query stream Φ, and
p servers of a pipelined term-partitioned PIRS, the
Term-Assignment Problem asks for finding the p-
partitioning λ which minimizes Ωλ (Φ).

4 Mining WSE query logs to solve the Term
Assignment problem.

The Term Partition Problem has been expressed in
terms of the query stream Φ submitted to a WSE. Un-
fortunately, the queries that will be actually submit-
ted are obviously unknown when we have to partition
the global index. However, several studies have con-
firmed the presence of self-similarities in typical WSE
query logs (as an example, see [6]). We believe that the
knowledge of recurrent usage patterns extracted from
the queries submitted to the system in the past, can be
profitably exploited also to devise an effective solution
for the term-assignment problem. Hereinafter, we will
continue to use the symbol Φ to simplify the notation.
It will be clear from the context whether we are refer-
ring to the queries submitted in the past (Φtraining), or
to “future” queries (Φtest), used to test the expected
performance of the term assignments devised.

In the following we will show that both the two
measures, ωλ(Φ) and L̂λ(Φ), used in Definition 8 can
be expressed in terms of of ρ(X), X ⊆ T , defined as the
number of queries in Φ that contain at least one of the
terms of the term-set X, i.e., ρ(X) = |{Q ∈ Φ | ∃t ∈ X
such that t ∈ Q}|.

This means that an interesting information to be
extracted from the query log Φ are the values of ρ(X),
for some X ⊆ T . We will see that there are different
ways of computing ρ(X) by mining Φ, and that the
best technique to use depends on the heuristic strategy
chosen to solve the Term Assignment problem.

4.1 Expressing the α-weight in terms of ρ(X).
Intuitively both ω and L̂ can be optimized by taking
into consideration conjunctions of terms. In fact, by
assigning to the same partition terms that often co-
occur together we reduce both the average width and
the overhead due to extra communications.

Conversely, the following two theorems show that
these two measures can be expressed in terms of ρ, thus
taking into consideration only terms disjunctions and
disregarding any information about terms conjunctions.

Theorem 4.1.

ωλ (Φ) =

∑
1≤j≤p ρ(Tj)

|Φ|

Proof. Given Q ∈ Φ, consider the following query vector



Λλ(Q) ∈ {0, 1}p, whose j-th component is equal to:

(Λλ)j (Q) =

{
1, if Qj

λ 6= ∅;
0, otherwise.

We can express ωλ (Q) in terms of this vector, i.e.,

ωλ (Q) = |Hλ(Q)| =
∑

1≤j≤p

(Λλ)j (Q)

Therefore, we can rewrite ωλ (Φ) as follows:

ωλ (Φ) =

∑
Q∈Φ |Hλ(Q)|

|Φ|

=

∑
Q∈Φ

∑
1≤j≤p (Λλ)j (Q)
|Φ|

=

∑
1≤j≤p

(∑
Q∈Φ (Λλ)j (Q)

)
|Φ|

Note that
∑

Q∈Φ (Λλ)j (Q) simply corresponds to
the total number of queries Q ∈ Φ such that Qj

λ 6= ∅,
i.e. the queries that contain at least one term belonging
to Tj , i.e., such that λ(Q) = j. Therefore:

(4.8)
∑
Q∈Φ

(Λλ)j (Q) = ρ(Tj)

which proves the theorem.
2

Theorem 4.2.

L̂λ(Φ) = max
j=1,...,p

( Toverhead · ρ(Tj) +

+
∑
t∈Tj

(Tdisk(|lt|) + Tcompute(|lt|)) · ρ({t}) )

Proof. Recall that by definition L̂λ(Φ) is the maxi-
mum workload Lj

λ(Φ) among the p servers defined by
Equation 3.3. Consider that, for each server j, the
workload Lj

λ(Φ) is a function of Toverhead, Tdisk(|lt|),
Tcompute(|lt|). In particular, the server j has a global
workload of:

• Toverhead for each subquery Qj
λ 6= ∅ in the query

stream Φ;

• Tdisk(|lt|) + Tcompute(|lt|) for each posting list lt
processed. In other words, this contribution must
be considered for all the occurrences of any t,
t ∈ Tj , in the various subqueries Qj

λ.

Note that the number of subqueries Qj
λ 6= ∅ exactly

corresponds to ρ(Tj). Moreover, the number of occur-
rences of t in all Qj

λ is exactly ρ({t}). This proves the
theorem.
2

5 Solving the Term Assignment Problem

In order to reduce the complexity of any optimization
algorithm for the Term Assignment Problem, we can
consider only terms most frequently occurring in past
Φ, counting on the self-similarity between user queries.
It is worth noting that, since the distribution of terms
within queries (but also in documents) follows a power-
law distribution, not only the most frequent terms are
largely the most informative ones, but also concur to
realize the largest part of the WSE workload, since they
likely appear in most of the queries.

Due to this feature of a typical WSE query log, in
our experiments we also profitably tested the benefits of
a very limited replication of the most frequent terms on
all the parallel servers of our WSE, in combination with
the optimized assignment of the remaining frequent
terms.

In the following we illustrate two optimization
methods. The first is based on a local search method. It
starts from a given assignment λ, and then iteratively
changes λ, thus requiring to recompute the α-weight
objective function (Equation 8). We will show that to
make feasible this local search method, we can profitable
exploit the Inclusion-Exclusion (IE) principle [10], and
its approximation using Frequent Itemset Mining (FIM)
[1,14]. The second method is instead based on a greedy
method, which incrementally builds the λ assignment
function.

The greedy method can be used to determine a first
assignment λ that approximates the problem solution,
while the local search can be used to further refine and
optimize the initial solution.

The experiments and the results reported in the
paper only refer to the greedy heuristic method, while
the further refinement, made possible by the local search
method, will be the subject of future work. However,
we will show that the greedy method is already able to
optimize the performance of a term-partitioned parallel
WSE, by reducing the load imbalance and the average
number of servers contacted per each query.

5.1 Local Search. Since we formulated the Term
Assignment as an optimization problem, we could apply
any traditional local search algorithm to handle the
exponential search space of the problem, such as taboo
search, simulated annealing or genetic algorithms.

After a first assignment λ of the terms, these



methods look for a new re-arrangement that improves
the α-weight function as defined in Equation 8. In this
case, we need to re-evaluate the various ρ(Tj) associated
with different candidate solutions. Unfortunately, due
to the size of the query log, it is not feasible to re-
evaluate from scratch the objective function for each of
the large number of iterations required by the above
algorithms.

An interesting alternative is to calculate ρ(Tj) us-
ing the Inclusion-Exclusion (IE) principle [10]. The IE
is traditionally used to compute the support of a dis-
junction of terms (items), like ρ(Tj), using the knowl-
edge about the support of the conjunctions of terms,
according to the following formula:

ρ(Tj) =
∑

∅6=X⊆Tj

(−1)|X|+1σ(X)

where σ(X) = |{Q ∈ Φ | X ⊂ Q}|.
Since the number of subsets of Tj is 2|Tj |, computing

the above summation may be expensive. However,
it has been shown that it is possible to have a good
approximation by only considering the supports of the
frequent term-sets F occurring at least min supp times
in the query log. The collection F can be mined by using
a FIM algorithm. To this end, we consider Φ as the
input dataset containing several transactions/queries
Q, each made up of distinct items/terms in T . By
running a FIM algorithm on Φ we obtain the list of
all the term-sets X ⊆ T that co-occur in a number
of transactions/queries greater than a given threshold
min supp, together with their exact support σ(X).

Given F , we can finally define the IE approximation
ρ̃(Tj ,F) as follows:

(5.9) ρ̃(Tj ,F) =
∑

∅6=X⊆Tj , X∈F

(−1)|X|+1σ(X)

This approximation is likely to be enough accurate,
especially with low support thresholds, which however
makes expensive the application of this methodology,
even considering the sparseness of query log.

For this reason, in this paper we only investigate
in depth a greedy algorithm, which only needs the
extraction of single frequent terms from Φ, i.e., the set
F1 of all terms occurring at least min supp times in Φ.

5.2 A Greedy Solution. Greedy heuristics are usu-
ally very useful to find locally optimal solutions which
can be further improved by means of other optimization
methods. In our specific problem, we will show that the
quality of the solution found by our greedy strategy is
comparably better than other solutions.

The term-assignment problem can be thought as a
variation of the classical NP-hard Bin Packing problem,
where we have to place objects of certain weights into a
fixed number of different bins with the aim of optimizing
a given objective function. While in the original bin
packing problem we simply aim at balancing the weights
assigned to the bins, in our case the objective function
to minimize not only depends on the single weights
assigned to terms (our objects), but also on the mutual
assignment of terms that often co-occur in the same
queries to the various index partitions. This has to
be considered in order to reduce the average width of
queries ωλ and the communication overheads Toverhead

on each server.
One of the issues we have to deal with is that Ωλ(Φ)

is an a-posteriori measure. It can in fact be evaluated
only after all the terms in T have been assigned by
function λ. Due to the greedy nature of the algorithm,
we instead need to evaluate Ω step by step, each time
a new term is going to be assigned to a partition. In
particular, we need to evaluate Ω even if only a subset
T ′ of all terms, T ′ ⊂ T , has been assigned, and thus
only the p-partitioning function λ′ : T ′ → {1, . . . , p}
has been defined, i.e., only a partial solution has been
so far determined. Accordingly we introduce Ωλ′(Φ) to
denote the partial objective function evaluated at each
step of the algorithm.

To compute Ωλ′(Φ), the main issue concerns the re-
computation of the various ρ(T ′

j ) when a new term t is
added to T ′

j . Suppose that we maintain the set of query
identifiers associated to T ′

j , i.e. qid-set(T ′
j ) = {Q ∈

Φ|T ′
j ∩ Q 6= ∅}, where ρ(T ′

j ) = |qid-set(T ′
j )|. It is easy

to show that ρ(T ′
j ∪ t) = |qid-set(T ′

j ) ∪ qid-set({t})|.
Note that this incremental computation of ρ(T ′

j )
is cheaper than the approximation made possible by
Equation 5.9, which needs the extraction of the whole
collection of frequent term-sets F from Φ. In addition,
since our algorithm only assigns the most frequent
terms, we can remove any infrequent term from the
query log. Due to the highly skewed distribution of
queries and terms in Φ, this means to significantly
reduce the size of Φ. This also reduces the space
complexity of the incremental re-computation of ρ(T ′

j ),
and permits to store in main memory the inverted
representation of the pruned Φ, based on the various
qid-sets associated to the frequent terms.

The pseudo-code of our greedy term-assignment
algorithm is shown in Algorithm 1.

The first step of the algorithm is the discovery of
the most frequent terms F1 in the query log Φ. In fact,
our algorithm assigns the terms in T in two distinct
phases.

The most important phase of the algorithm is the



Algorithm 1 Input: Φ, p, T . Output: a p-partitioning
function.

λ′ = ∅
Let Tj := ∅, 1 ≤ j ≤ p
Let F1 := Extract frequent terms (Φ, min supp)
TF := {t | t ∈ T and t ∈ F1} {Frequent terms only}
T := T \ TF
Sort TF in descending frequency order.

{Assign the frequent terms}
while TF 6= ∅ do

Extract the most frequent t ∈ TF
TF := TF \ {t}
for all j, 1 ≤ j ≤ p do

Try to assign t to Tj , and thus try to modify λ′

accordingly.
Compute ρ(Tj ∪ t) to evaluate Ωλ′ (Φ)

Assign t to the server j that minimizes Ωλ′ (Φ)
Tj := Tj ∪ t, and λ′ := λ′ ∪ (t, j).

{Assign the infrequent terms}
while T 6= ∅ do
T := T \ {t}
Assign t to the most under-loaded server j (|Tj | ≤
|Ti|, 1 ≤ i ≤ p)
Tj := Tj ∪ t, and λ′ := λ′ ∪ (t, j).

return λ′

Table 2: Main characteristics of the query logs used.
Query log queries terms query len. date
TodoBR 22,589,568 959,833 3.433 2001

Excite 2,477,283 419,603 3.364 Sep. 16th 1997
AltaVista 7,175,648 895,792 2.507 Summer 2001

former, during which the algorithm assigns the frequent
terms. Similarly to [8], we sort the frequent terms by
decreasing order of frequency, and exploit this order to
pick, one at the time, a term t ∈ T and assigning it to
the best partition Tj chosen on the basis of objective
function Ωλ′ (Φ).

In the latter phase, the remaining terms are as-
signed, by trying to balance the number of terms on
each server. Note that these (infrequent) terms have
only little or no impact on the server workloads, since
they may even not occur in the future queries.

6 Experimental Results

In order to validate our term assignment strategy, based
on an heuristic greedy algorithm, we used three query
logs: TodoBR1, Excite, and AltaVista. These are real
traces of the queries submitted to the homonymous

1We acknowledge Prof. Nivio Ziviani of the LATIN laboratory

of the computer science department of the Federal University of
Minas Gerais for providing us this query log.

popular search engines. Table 2 reports the main
characteristics of the query logs used: the number
of queries in each log, the number of different terms
occurring in them, the average length of queries, and
their dates. Note that TodoBR is a huge log of a whole
year. Each record of a query log refers to a single query
submitted to the web search engine for requesting a page
of results. All query logs were preliminarily cleaned
and transformed into a transactional form, where each
query is simply formed by a query identifier and the
list t1, t2, . . . , tq of terms searched for. The terms were
all converted to lower case, but we did not perform
stemming nor remove stopwords. The first 2/3 of each
query log (Φtraining) were used to drive the partitioning
of the index, while the last part (Φtest) was used to test
the partitioning obtained.

Unfortunately, we do not have real collections of
documents available, coherent with the query logs,
and we could not test our algorithm on a real web
search engine. Therefore, we validated our approach
by simulating a broker and assuming constant times for
Tdisk, Tcompute, and Toverhead disregarding the lengths
of the posting lists. Our model is however sound and
general, and the knowledge of the actual values of these
factors could be easily taken into account during the
term assignment process.

In all the tests discussed here we considered a par-
titioning of the index among p = 8 servers. We con-
ducted tests also with different numbers of partitions.
Since trends and macroscopic behaviors do not change
remarkably, we will not report these results.

As baseline competitors of our greedy approach, we
consider a random assignment of terms, and a simple
bin packing strategy. In the random case each term was
randomly assigned to one of the p servers.

The plots reported in Figure 2 show the effective-
ness and flexibility of our optimization function and its
α-weighting. Each plot reports, as a function of α, both
the values measured on Φtest of L̂λ (in the y-axis on the
left of each plot) and of ωλ (in the y-axis on the right of
each plot). Furthermore, in each plot we reported the
average load Lλ, and the baseline value of ωλ result-
ing from the bin packing heuristic. The three plots (a),
(c), and (e) of the figure refer to a disk-dominant set-
ting where the load of a server is given by Equation (3.1)
with Tdisk = 1.0, while the plots (b), (d), and (f) are rel-
ative to a network-dominant one where the load is given
by Equation (3.2) with Toverhead = 4 and Tcompute = 1.

In all the cases we can see that our approach almost
evenly balances the workload among servers. In fact,
the values of Lλ and L̂λ are very close for all values of
α up to 0.9 (0.8 in plot 2.(a)). On the other hand, the
curves ωλ decrease for increasing values of α. Note that
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Figure 2: (a)-(f): values of L̂λ(Φ) and ωλ(Φ) as a function of the tuning parameter α;



Baseline Cases Term Assignment
Servers random bin packing α = 0.9

Φtest = TodoBR
1 28 28 50
2 31 30 20
3 17 17 14
> 3 24 25 16

Φtest = Excite
1 22 22 33
2 33 33 34
3 22 21 19
> 3 23 25 14

Φtest = AltaV ista
1 29 29 41
2 39 39 38
3 21 21 16
> 3 11 11 5

Table 3: Percentages of queries in the three query logs
as a function of the number of servers involved in their
processing.

on AltaVista the value of ωλ becomes smaller than 2,
which means that the most of the queries are answered
using only one server. As expected, a setting of α which
weights too much ωλ results in a unbalanced assignment
of terms to some server, while a setting which weights
too much L̂λ does not improve the average query width.

From these tests we can however see that a value
of α equal to 0.8 always allows our technique to devise
assignments of terms resulting in a good tradeoff be-
tween WSE throughput (given Hypothesis 1) and query
latency (given Hypothesis 2).

The figures reported in Table 3 show the percentage
of queries occurring in the test sets Φtest of the three
query logs as a function of their width. Our assignment
strategy allows to remarkably increase the number of
queries involving only one server. Obviously, the less
the servers involved in answering a query the lower the
query response time and the communication volume.
On the TodoBR log the number of queries served by a
single server almost doubled w.r.t. the random and bin
packing assignments. On the Excite, and the AltaVista
query logs, the improvements were instead of 50% and
41%, respectively . As a consequence, the number
of queries requiring more than one server decreases
correspondingly. We can see that the number of queries
solved by more than 3 servers is reduced by at least 1/3
on TodoBR and Excite, and it is halved in the AltaVista
case.

Finally, we conducted some tests to measure the
effect of replicating in all the servers the index entries of
some of most frequently queried terms. We introduced
very small percentages of replicated terms, ranging from
0.001% to 0.1% of the the total number of terms, and
measured the effect on the average number of per-query
servers.

Replication Factors
0.0001 0.0005 0.001

bin term bin term bin term
Servers pack. ass. pack. ass. pack. ass.

Φtest = TodoBR
1 42 54 56 62 63 67
2 31 22 22 18 19 16
3 12 10 9 8 8 8
> 3 15 14 12 11 10 9

Φtest = Excite
1 30 40 40 48 46 53
2 39 38 38 36 36 33
3 20 15 16 12 13 10
> 3 11 6 7 4 5 3

Φtest = AltaV ista
1 36 45 45 54 50 60
2 42 37 39 34 37 30
3 16 13 12 10 10 8
> 3 5 4 3 3 3 2

Table 4: Effect of replicating the index entries of most
frequently queried terms.

The assumed behavior is the following: in the case
of a multi-terms query containing some terms belonging
to the set of replicated terms, these terms are all inserted
in one of the sub-queries of remaining terms chosen
at random. The data reported in Table 4 reports the
results of these tests. We can see that replication is
very effective in reducing the average number of per-
query servers also in the baseline case of bin packing.
However, the advantages of using our term assignment
technique are remarkable also in these tests.

7 Conclusion and Future Work

We have investigated the problem of performance in
term-partitioned, large-scale parallel WSE, and devised
a framework to model the main quantities affecting
throughput and response time in this kind of systems.
Several studies demonstrated that load imbalance is one
of the most important issue in term-partitioned parallel
WSEs.

We thus proposed a technique for assigning the
terms of the lexicon to the various index partitions in a
way that allows the average number of servers activated
per each query to be reduced, and the workload among
the servers to be evenly balanced. We based our
technique on the assumption that the knowledge of the
queries submitted in the past can be profitably exploited
to devise a partitioning of the index that enhance the
performance of the WSE in processing future queries.

Our term partitioning algorithm is thus driven by
a mining technique that extracts from query logs recur-
rent WSE usage patterns. These patterns succinctly en-
close a global knowledge of WSE usage that is exploited
in a simple greedy algorithm to assign each term of the



lexicon to the partition that minimize our cost function.
Our term assignment strategy was validated by

means of simulations conducted with three real query
logs of popular Web search engines. Experiments
showed that the devised term assignments improved
WSE throughput and query response time with respect
to random and bin packing term assignments. How-
ever, since a WSE is a complex, highly nonlinear envi-
ronment, we are aware that our analysis and our results
have to be confirmed by testing performed on an actual
parallel WSE with an actual huge index. Finally, we
studied the possibility and effectiveness of replicating a
small fraction of most accessed index entries on all the
servers.

There are many important issues we plan to investi-
gate in the near future: (1) experimenting with the ap-
proach on an actual test-bed system; (2) evaluating the
improvements in the quality of index partitioning that
can be achieved by exploiting the local search technique
described in Section 3.2; (3) studying the lifetimes of our
term partitioning (being driven by past usage patterns,
in fact they may suffer from performance degradation
due to problems concerning the freshness of data from
which statistics have been drawn); (4) studying on-line
policies for migrating/replicating index entries at run-
time on the basis of the actual usage of the system.
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